Air Pollution Training Institute COURSE 415: CONTROL OF GASEOUS EMISSIONS

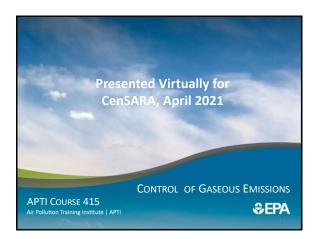
STUDENT WORKBOOK

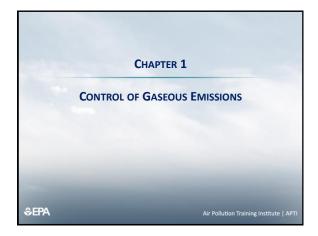
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

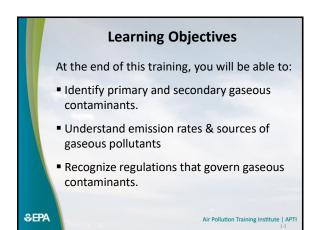
Office of Air and Radiation Office of Air Quality Planning and Standards Research Triangle Park, NC 27711

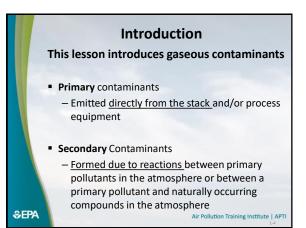
April, 2021

William Franek & Louis DeRose

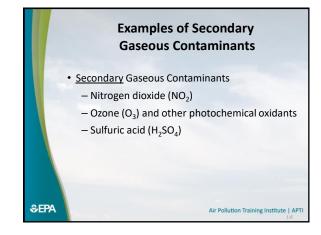

Course 415 Control of Gaseous Emissions April 12 – 16, 2021

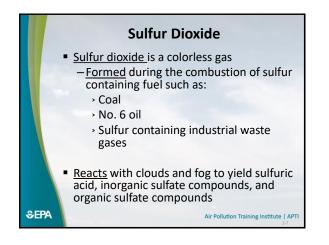

AGENDA

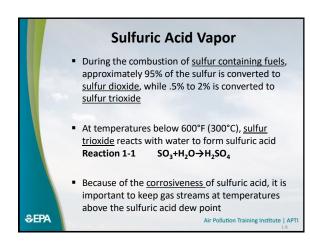

LOCATION

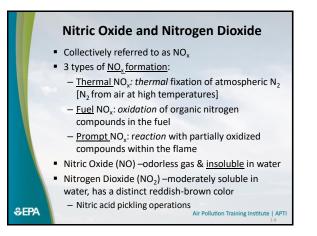

MODERATORS

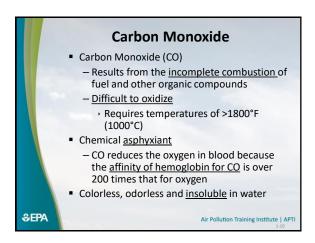
Virtual Training	Louis DeRos	e / William Franek
DAY & TIME	SUBJECT	SPEAKER
Day One		
9:00	Introduction	W. Franek
9:15	Basic Gas Concepts Chapter 1	L. DeRose
10:30	BREAK	2. 2011000
10:45	LEL & Control Types Chapter 2	L. DeRose
11:45	Air Pollution Control Systems Chapter 3	W. Franek
	Includes Capture Hoods & Fan Designs	
1:00	ADJOURN	
Day Two		
9:00	Adsorption Systems Chapter 4	W. Franek
10:30	BREAK	
10:45	Adsorption Systems (continued)	W. Franek
12:15	Absorption Systems Chapter 5	W. Franek
1:00	ADJOURN	
Day Three		
9:00	Absorption Systems (continued)	W. Franek
10:45	BREAK	
11:00	Oxidation Systems Chapter 6	L. DeRose
1:00	ADJOURN	
Day Four		
9:00	Condensation Control Chapter 7	W. Franek
10:45	BREAK	
11:00	Controls and Regulations for GHGs Chapter 1	0 L. DeRose
1:00	ADJOURN	
Day Five		
9:00	Pre-Test Review	L. DeRose
9:30	Control of SO2 Chapter 9	W. Franek
10:45	BREAK	
11:00	Control of NOx Chapter 8	
12:30 1:00	Mercury and Multipollutant Controls Chapter 1 ADJOURN	1 W. Franek
Course Instructo		
William J. Franek,		e, J.D., M.S., P.E.
William J. Franek,	LLC Attorney at La	aw
6807 West 64th Pl		
Chicago, IL. 60638	Glen Ellyn, IL	
E-mail: billfranek@g	mail.com E-mail: louder	ose@yahoo.com

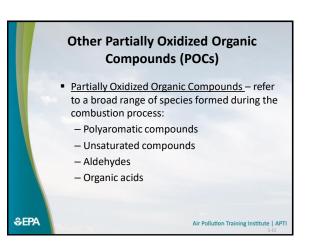

Examples of Primary Gaseous Contaminants


- Primary Gaseous Contaminants
 - Sulfur dioxide and sulfuric acid vapor
 - Nitric oxide and nitrogen dioxide
 - Carbon monoxide and partially oxidized organic compounds
 - Volatile organic compounds and other organic compounds
 - Hydrogen chloride and hydrogen fluoride
 - Hydrogen sulfide and other reduced sulfur compounds (mercaptans, sulfides)

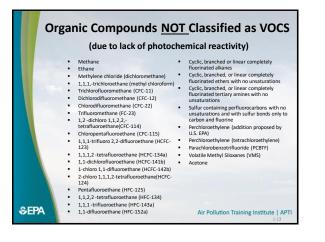

€PA

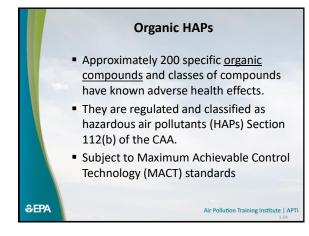

– Ammonia

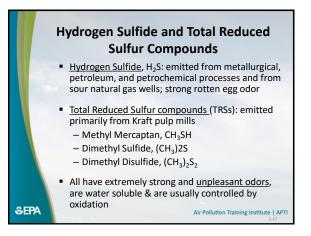

Air Pollution Training Institute | APTI

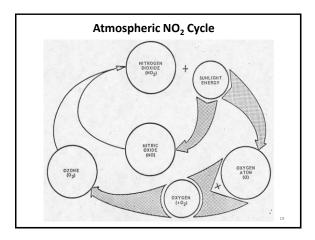


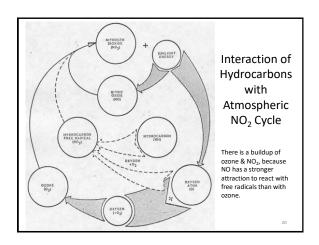


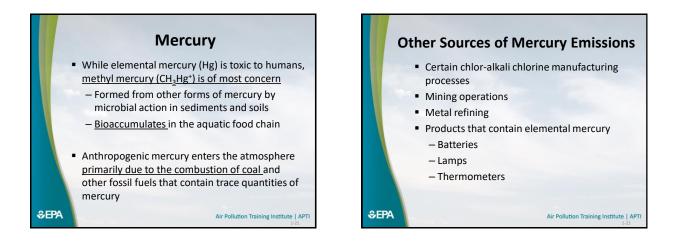


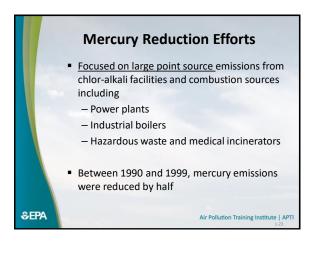


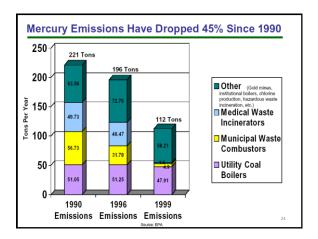





Compound	CAS Number	Compound	CAS Number	Compound	CAS Numbe
Acetaldehyde	75070	Ethylene oxide	75218	Phosgene	75445
Acetonitrile	75058	Ethylene glycol	107211	Phthalic anhydride	85449
Acrolein	107028	Formaldehyde	50000	Styrene	100425
Acrylonitrile	107131	Hexane	110543	Tetrachloroet hylene	127184
Aniline	62533	Methanol	67561	Toluene	108883
Benzene	71432	Methylene chloride	75092	2,4 Toluene diisocynate	584849
13, Butadiene	106990	Methyl ethyl ketone	78933	1,2,4 Thrichlorobe nzene	120821
Carbon disulfide	75150	Methyl isocyanate	624839	Trichloroethyl ene	79016
Chlorobenzene	108907	Naphthalene	91203	Xylenes	95476
Chloroform	67663	Nitrobenzene	98953		
Ethyl benzene	100414	Phenol	108952		


Ну	drogen Chloride and Hydrogen Fluoride
	HCl and HF are HAPs
	 (hydrochloric acid and hydrofluoric acid) Inorganic acid gases that are <u>released from processes</u> such as
	 Waste incinerators Fossil fuel-fired boilers
	– Chemical reactors
	 Ore roasting operations
	 Emitted from combustion processes <u>burning</u> <u>chloride and fluoride organic compounds</u> and a variety of mineral ore processing operations
\$epa	 Essentially 100% of the chlorine and fluorine in the fuel is released as HCl and HF Air Pollution Training Institute APTI 136





Solid Waste Combustion: CAA $\delta 129$

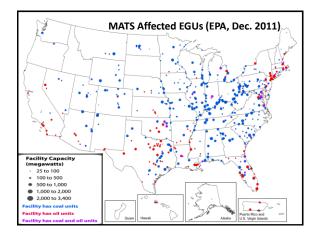
- δ 129 was added (1990 CAAA) & required EPA to pass $\underline{\text{NSPS}}$ for new & existing solid waste combustion units.
 - Municipal waste combustion units (MWC)
 - Hospital/medical/infectious waste incinerators
 - Commercial & industrial solid waste incinerators
 Other solid waste incinerators (small, residential, particultural & construction waste waste waste
- agricultural & construction waste, wood waste, crematories, & contaminated soil treatment waste)
 δ129 limits emissions of particulate matter, carbon monovide, dioving furane sulfur diovide, nitrogen
- monoxide, dioxins/furans, sulfur dioxide, nitrogen oxides, hydrogen chloride, lead, **mercury**, and cadmium
- δ129 does not regulate incineration of hazardous waste.

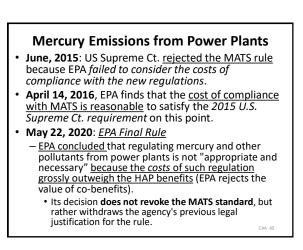
Recent Mercury Regulations

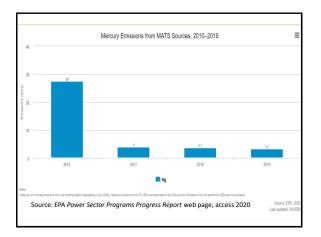
- <u>August 2010</u>: EPA issued NESHAP requiring reductions of mercury emission from *cement plants* (third-largest source of mercury air emissions in the U.S.)
- Feb 17, 2011: EPA issued NESHAP for gold ore processing & production facilities (seventh-largest source of mercury air emission in the U.S.)

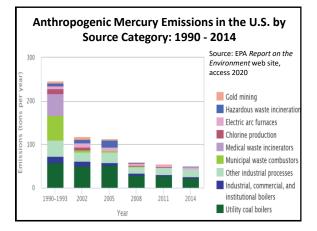
Mercury Emissions from Power Plants

- 2005: Clean Air Mercury Rule (CAMR) required <u>coal-fired power plants</u> to reduce <u>mercury</u> emissions by 70% by establishing a "cap & trade" program (as a NSPS).
 - EPA said that MACT approach not necessary.
 - In 2008, Ct. vacated CAMR & said <u>EPA must</u> establish a §112 mercury MACT for power plants (can't substitute a NSPS for it).

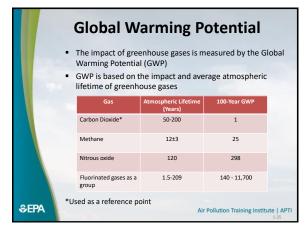

CAA -27

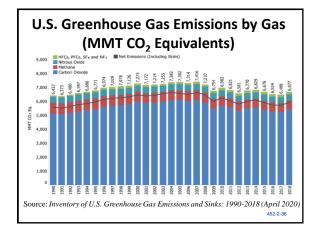

Mercury Emissions from Power Plants


- On Feb 6, 2012, EPA passed a <u>coal &/or oil fired</u> <u>power plant</u> mercury MACT (called <u>MATS</u> – Mercury Air Toxic Standard)
 - <u>Applies</u> to EGUs larger than 25 megawatts (MW) that burn coal or oil for the purpose of generating electricity (600 power plants).
 - Will <u>reduce</u> emissions of <u>mercury</u> & other HAPs i.e.
 - Heavy metals (mercury, arsenic, chromium, & nickel) & (HCl & HF).


400 -2 - 28

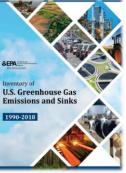
CAA -26

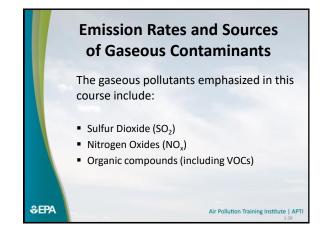


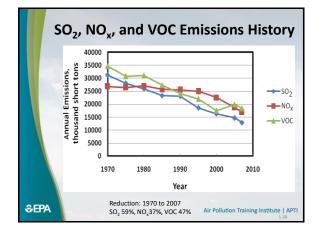


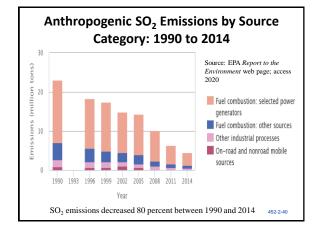
Boiler NESHAPs (Major and Area Sources)

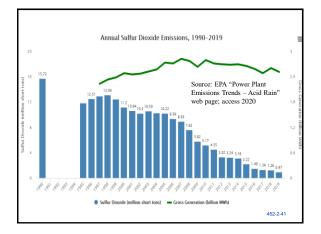
- <u>Applies</u> to <u>boilers and process heaters</u> at these facilities: *industrial* (i.e. chemical plant), *commercial* (i.e. shopping malls) or *institutional* (i.e. universities).
- Reduce toxic air pollutants including <u>mercury</u> & other HAPs
- Major source MACT would <u>not apply</u> to:
 - A unit that combusts "solid waste" (units that burn solid waste are "incinerators" subject to CAA 129)
 - Power plants (because of "MATS")

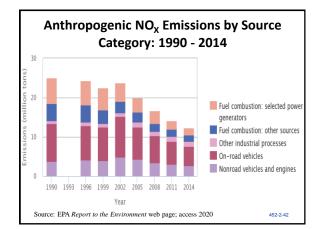


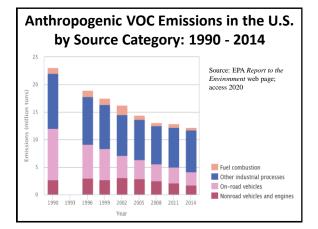


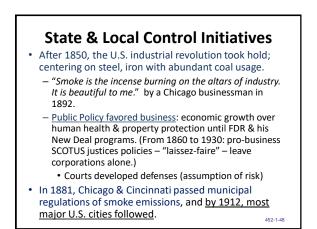





- Energy
- Industrial process
- Solvent & other product use
- Agriculture
- Land use change & forestry
- Waste & Other






Table 1-5. N	O _x emissions by	source cate	egory, 1970 and 20	008.
Source Category	197	0	200	8
	Thousands of Short Tons	Percent of Total	Thousands of Short Tons	Percent o Total
Fuel combustion, electric utilities	4900	18	3006	18
Fuel combustion, industrial	4325	16	1838	11
Fuel combustion, other	836	3	727	4
Highway vehicles	12,624	47	5206	32
Off-highway vehicles	2652	10	4255	26
Other	1545	6	1307	8
Total	26,882	100	16,339	99

			gory, 1970 and 20	
Source Category	197 Thousands of Short Tons		Thousands of Short Tons	108 Percent o Total
Fuel combustion, electric utilities	30	0	50	0
Fuel combustion, industrial	150	0	130	1
Fuel combustion, other	541	2	1269	8
Chemicals manufacture	1341	4	228	1

	Table 1-6.	VOC emissions b	y source cate	gory, 1970 and 20	008.
Sou	rce Category	197	70	20	008
		Thousands of Short Tons	Percent of Total	Thousands of Short Tons	Percent o Total
Pet	roleum industry	1194	3	561	4
Solv	ent utilization	7174	21	4226	27
Sto	rage and transport	1954	6	1303	8
	ste disposal & /cling	1984	6	374	2
Hig	hway vehicles	16,910	47	3418	21
Off	highway vehicles	1616	5	2586	16
Oth	er	1765	5	1782	11
	Total	34,659	99	15,927	99

Donora Episode: Oct. 26, 1948

- Start of a 5 day temperature inversion
- 50% of all residents sick (6,000 people)

 Chest pains, cough & labored breathing
 Irritation in eyes, nose and throat
- 20 people died
- Furnaces not shut down until the last day

 Zinc furnaces like coke ovens were not allowed to stop, once cooled it cannot be restarted.
- · Town doctor told everyone to leave town
 - Many went to a park high on a hill, as soon as they rose above smog, they started to feel better.

Donora: Investigations resulted, but none could produce direct evidence of air pollution's harm.

Surgeon General, Scheele, wrote in the report's foreword: "This study is the opening move ...in improving the nations health. We have realized during our growing impatience with the annoyance of smoke, that pollution from gases, fumes & microscopic particles was also a factor to be

reckoned with."

AIR POLLUTION IN DONORA. PA. Brandmidger of the active provide of outwore 1988 PRESENT AND ARTORNAL Control of the Active Section Provide Anti-Base Section 2019 Prime Reserve Laboration 1999


Contaminant Regulations

- Prior to1950 some states and local agencies enacted particulate pollutant control regulations (opacity) & were not aware of gaseous contaminants effects_such as SO₂, VOCs, and HF.
- The <u>environmental awareness</u> that began to increase during the 1950s and 1960s culminated in the enactment of the Clean Air Act of 1970.

Federal Legislative Landmarks

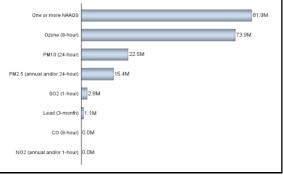
- 1955 Air Poll. Control Act: Fed research funding
- Debates: Fed or state responsibility
- <u>1963 CAA</u>: (compromise) Funding for state air programs
- <u>1965 CAAA</u>: Auto emission stds. (CO & HxCx)
- Debates: national stds. vs. regional stds. ambient air stds. vs. emission stds.
- <u>1967 Air Quality Act</u>: States set regional air quality stds. based on federal air quality criteria
- States failed to set stds., collect ambient air data & conduct emission inventories (21 SIPs submitted; none approved)
- HEW (understaffed) failed to set air quality control regions
 1970 CAAA: (sharply increased fed authority)
- Uniform NAAQS, SIP, NSPS, NESHAP, & mobile sources

53

452-1-54

Federal Legislative Landmarks

- 1977 CAA Amendments
 - PSD
 - Non-attainment provisions
- 1990 CAA Amendments
 - Revised HAP program
 - Acid Rain & Ozone depletion
 - Title V Operating Permits
 - Strengthened enforcement provisions
 - New classifications for non-attainment areas

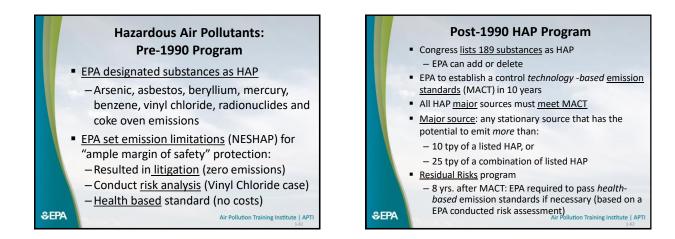

National Ambient Air Quality Standards (NAAQS)

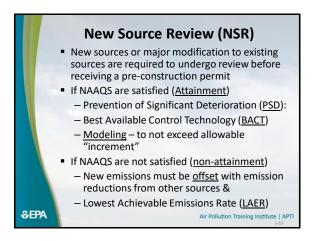
- Apply to sulfur dioxide, nitrogen oxides, photochemical oxidants, and carbon monoxide
- <u>Primary</u> standards are more restrictive and are designed to protect human health
- <u>Secondary</u> standards are intended to reduce adverse material effects, such as crop damage and building soiling
- Individual <u>states are responsible</u> for developing control strategies (SIP) to satisfy the NAAQS
 Air Pollution Training Institute | APTI

€PA

Pollutant	Aver	aging Time	Primary	Secondary
PM-2.5	(2012)	Annual	12 µg/m ³	None
PM-2.5	(2006)	Annual	None	15 µg/m ³
PM-2.5	(2006)	24-hour	35 µg/m ³	Same
PM-10	(1987)	24-hour	$150 \mu g/m^3$	Same
SO ₂	(2010)	1-hour	75 ppb	None
	(1971)	3-hour	None	500 ppb
CO	(1971)	8-hour	9 ppm	None
	(1971)	1-hour	35 ppm	None
Ozone	(2015)	8-hour/day	0.070 ppm	Same
NO ₂	(2010)	1-hour/day	100 ppb	None
	(1971)	Annual	53 ppb	Same
Lead	(2008)	3mo. average	0.15 μg/m ³	Same

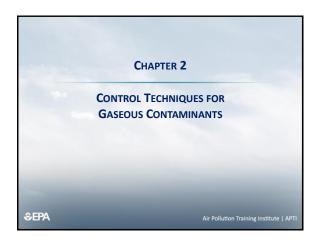
Number of People Living in Counties with Air Quality Concentrations above the NAAQS in 2019

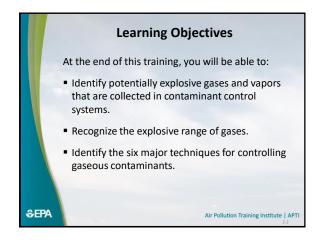

New Source Performance Stds (NSPS)

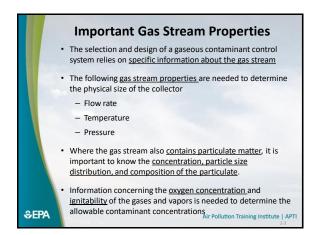

- <u>EPA sets "NSPS"</u> for <u>new</u> sources that "contribute significantly to air pollution."
 - 85 industrial categories identified (40 CFR Part 60)
 - Applies in <u>attainment and non-attainment areas</u>
- NSPS are <u>emission</u> or <u>performance standards</u> – new sources must meet standard once promulgated
- NSPS sets emission limits by application of the
- "best system of emission reduction" (BSER). - "<u>costs</u>" are considered
- NSPS to be <u>reviewed every 8 years</u>.

CAA -59

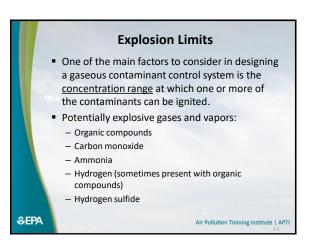
NSPS for Fossil Fuel-fired Electric Power Generating Facilities

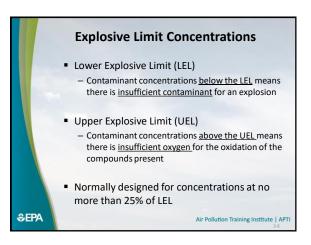

	Table 1-7. Ne		standards for fossil fuel-fire rating facilities	ed electric power			
	Category	Fuel Type	Emission Limit	Reduction Requirement			
	Particulate Matter	Solid	0.015 lb _m /10 ⁶ Btu ^A	99.9%			
	SO ₂	Liquid	1.4 lb _m /MWh	95%			
	SO ₂	Coal Refuse	1.4 lb _m /MWh	94%			
			<0.6 lb _m /10 ⁶ Btu	70%			
	NO _X	Solid	0.5 lb _m /10 ⁶ Btu	65%			
	NOx	Liquid	0.3 lb _m /10 ⁶ Btu	30%			
	NO _X	Gas	0.2 lb _m /10 ⁶ Btu	20%			
	NO _X		1.0 lb _m /MWh				
	NO _X	Liquid Backup Fuel ^B	1.5 lb _m /MWh				
	A: The owner/operator of a facility with a PM Continuous Emission Monitoring System (CEMS) may elect to comply with an alternate 0.14 lb_//MWh standard.						
Bepa	limits are no	t "feasible" (i.e. fugit	emission limits only. But ives) then under 111(h) t rk practice, or operationa	he NSPS can be			

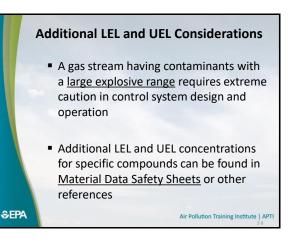


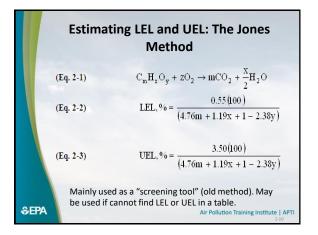


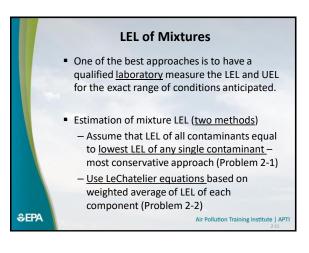
Title V

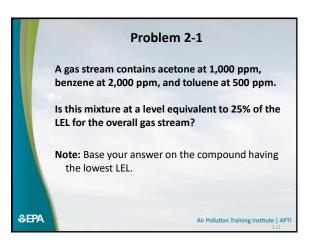

- <u>1990 CAAA created</u> the Title V Operating Permit Program
- <u>Purpose</u> of Title V Permit is to specify all the CAA *"applicable requirements" under one permit.*
- All <u>Major Sources</u> stationary sources must obtain a Title V permit
 - This includes any <u>CAA air pollutant ≥ 100 tons/yr.</u> (except GHGs)
- Title V required "periodic monitoring:" For example, for an uncontrolled glass furnace with a 20% opacity standard and a 0.04 gr/scf PM emission limit, a state might determine that periodic monitoring is a weekly visible emission reading for the opacity standard and an annual stack test for the emission limit.

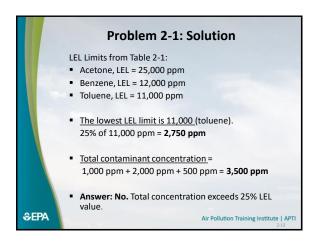


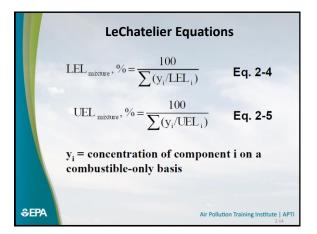


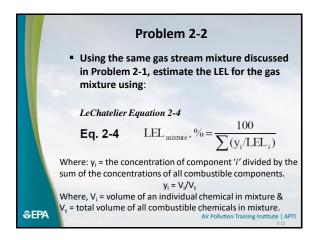


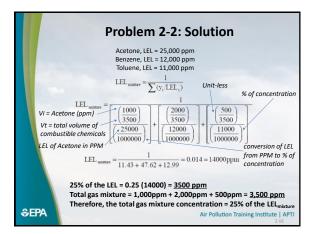


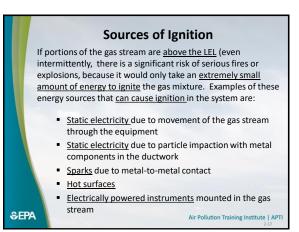

Temperatur	LEL and UE e and Amb oncentratio	ient Oxygen	
Compound	Lower Explosive Limit, % by Volume	Upper Explosive Limit, % by Volume	
Acetone	2.5	12.8	
Acrylonitrile	3.0	17.0	
Ammonia	15.0	28.0	
Benzene	1.2	7.8	
Carbon Disulfide	1.3	50.0	
Ethyl Alcohol	3.3	19.0	
Formaldehyde	7.0	73.0	
Gasoline	1.4	7.6	

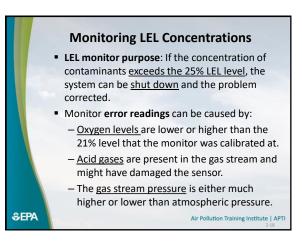

	Temperature Concent	e and Ambi ration (Cor	
	Compound	Lower Explosive Limit, % by Volume ¹	Upper Explosive Limit, % by Volume¹
	Hydrogen	2.0	80.0
	Methylene Chloride	13.0	23.0
	Octane	1.0	6.5
	Propane	2.1	9.5
	Styrene	0.9	6.8
	Toluene	1.1	7.1
	Xylenes	0.9	7.0
\$EPA	Source: National Institute for Oc 1. Convert percent 10,000 (e.g., 2% =	by volume to p 20.000 ppm)	

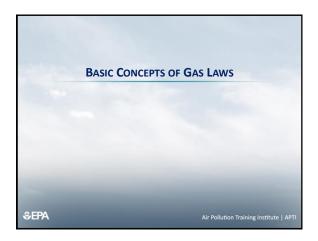


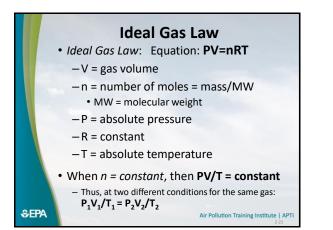


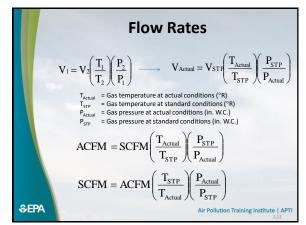


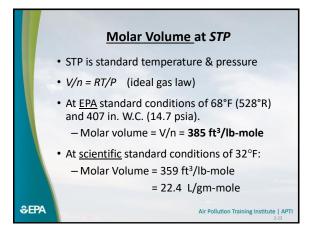


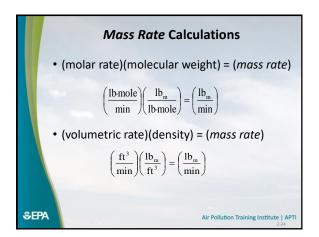


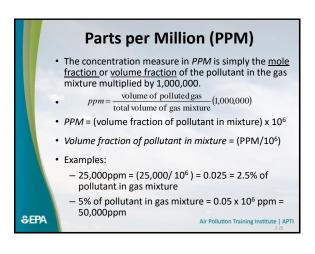


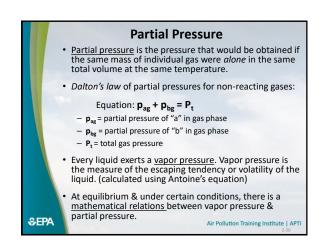


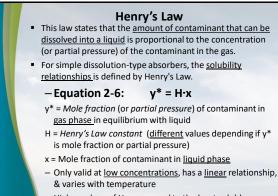


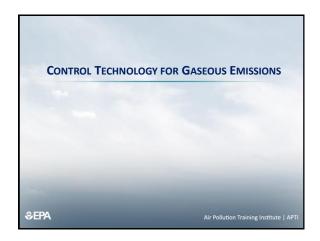










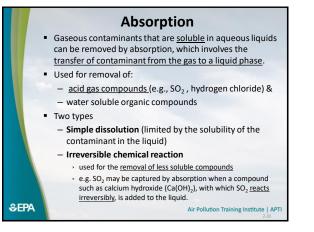


Gaseous Contaminant Control Technologies

This section introduces:

- The six major technologies used to control gaseous contaminants
- The uses and limitations of these gaseous control technologies.

Air Pollution Training Institute | APT


Absorption into liquids Biological treatment Adsorption onto solid surfaces Chemical oxidation Chemical reduction Condensation of vapors €PA

Types of Control Techniques

€PA

Air Pollution Training Institute | APTI

Chapter Two Control Techniques for Gaseous Emissions

 Applicability of Absorbers

 • Simple dissolution absorbers:

 • Limited by the solubility of contaminant in solvent

 • Irreversible chemical reactions absorbers:

 • Limited by the ability to capture and retain the contaminant in solution for a long enough time to complete the reaction

Important Factors Affecting Absorption Concentration dependence: obtain highest removal efficiency when the contaminant concentrations are high (because this maximizes the driving force for mass)

- transfer into the liquid phase).
 Gas temperature dependence: Absorption works best when the gas and liquid temperatures are low (because gas solubility increases with decreasing temperature).
- Multiple contaminant removal: a sophisticated separation process is required if each contaminant needs to be recovered individually.
- Particulate matter limitations: will <u>not impair</u> the removal efficiency for gaseous materials.
 - The <u>accumulation of particulate matter</u> on packed beds or at the outlet of spray nozzles may have an adverse effect on gas-liquid contact.

€PA

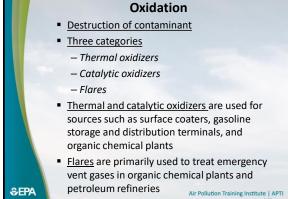
€PA

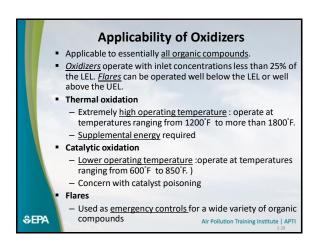
- Adsorption
- Involves the transfer of contaminant <u>from the gas</u> to the <u>surface of a solid adsorbent</u>
- <u>Two types</u> adsorption mechanisms:
 - Physical: weakly held to the adsorbent surface by intermolecular cohesion, normally reversible, used for organic compounds
 - Chemical: involves a chemical reaction which is not easily reversed, used for mercury vapors and acid gases
- In <u>regenerative adsorption</u>, the contaminant is subsequently desorbed so that the adsorbent may be used in multiple cycles.
- In <u>non-regenerative adsorption</u>, the adsorbent containing the contaminant is normally disposed of by land filling.

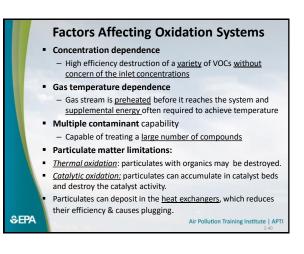
Air Pollution Training Institute | APTI

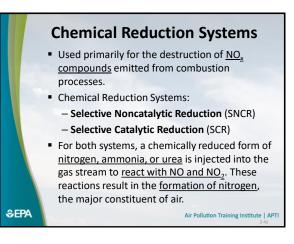
€EPA

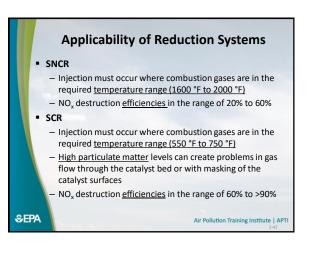
Air Pollution Training Institute | APT

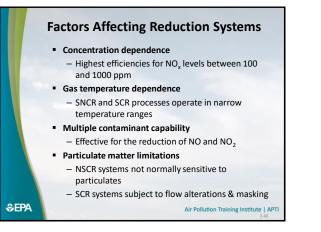

Biological Oxidation Systems · This process involves the collection of contaminants on the surface of a media that contains viable microorganisms. The contaminant is metabolized by the organism, and CO₂ and water vapor are produced. The primary factor affecting the applicability of a biological oxidation system is the contaminants' compatibility with the microorganisms i.e. some organics are <u>toxic</u> to the microorganisms and, therefore, cannot be effectively treated. In addition, some gas stream contaminants may affect the pH levels, thereby reducing the microorganism population €EPA Air Pollution Training Institute | APTI

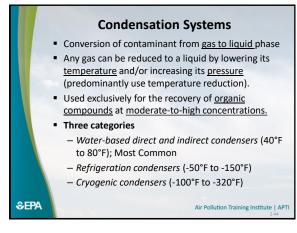

Applicability of Adsorption Processes

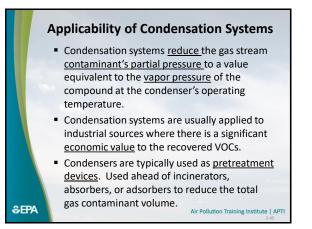

- Physical adsorption applicability:
 - For organic compounds capture, suitability depends on how strongly the <u>adhesive</u> <u>forces</u> are that hold the molecule to the surface of the adsorbent.
 - Most organic compounds with <u>molecular</u> weights between 50 and 200 can be collected with high efficiency.
- Chemical adsorption provide high removal efficiency for a variety of <u>acid gases</u> (Also, there are now applications for the control of vaporphase <u>mercury</u>.)

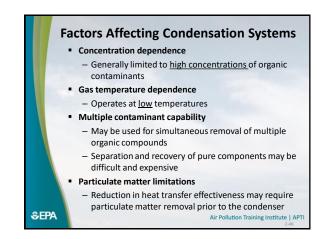

Air Pollution Training Institute | APTI



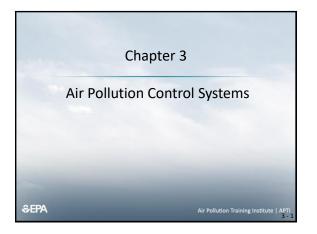


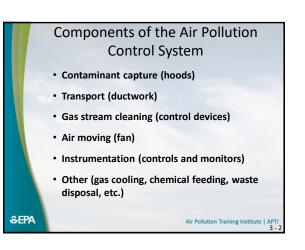


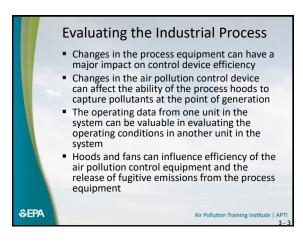




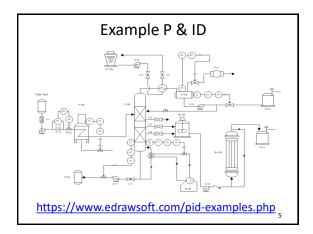
Chapter Two Control Techniques for Gaseous Emissions

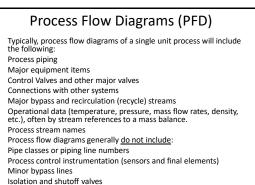

Table 2-2	. Summary of th	e General Applica	bility of Gaseou	Contaminant Tec	hniques
Control Technique	General Applicability	Typical Concentration Range	Typical Gas Temperature Range	Applicable for Control of Multiple Contaminants?	Applicable for Control of Gas Streams with Particulate Matter?
Absorption	Acid Gases and Organic Compounds	< 1 ppm to > 100,000 ppm ¹	<150°F ^b	Yes ⁸	Yes
Adsorption	Acid Gases and Organic Compounds	< 1 ppm to 25% of LEL ¹	<130°F ^b	Yes ^{g,h}	Pretreatment Often Required
Biological Treatment	Organic Compounds	< 1 ppm to ~1000 ppm	<110°Fc	Yes	Pretreatment Often Required

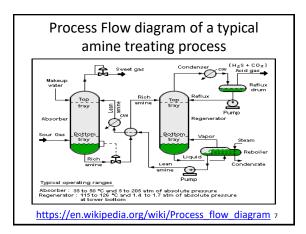


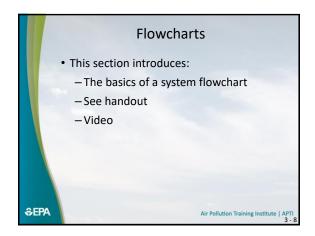

2-8

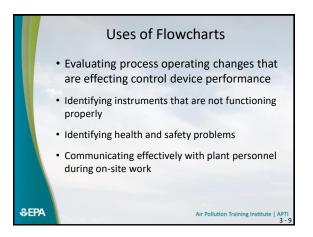
APTI Course 415 Control of Gaseous Emissions

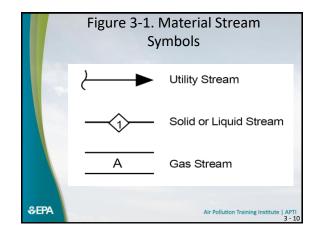

Chapter 3 Air Pollution Control Systems

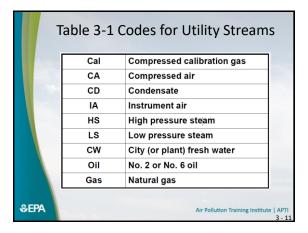


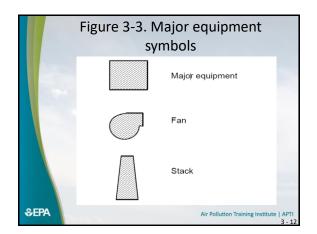


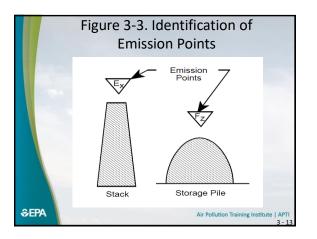


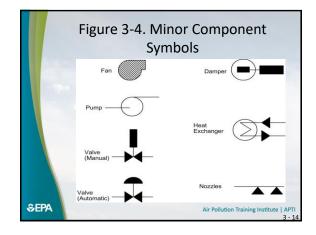


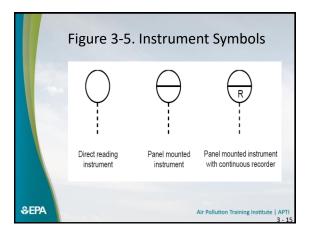

- Maintenance vents and drains
- Relief and safety valves
- Flanges

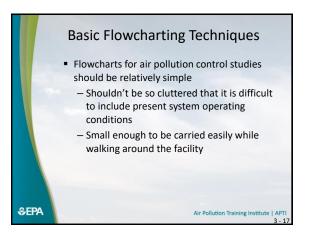

6

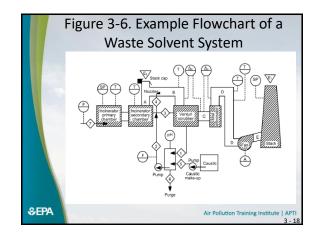


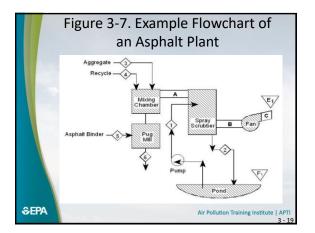


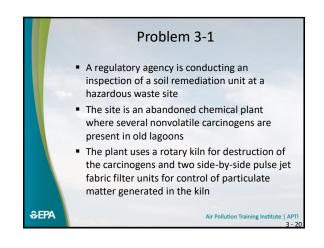


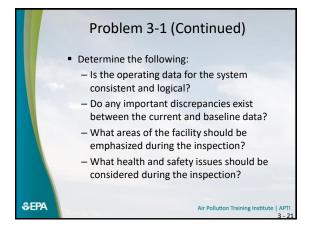


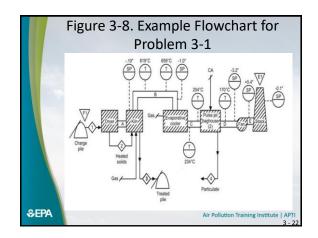


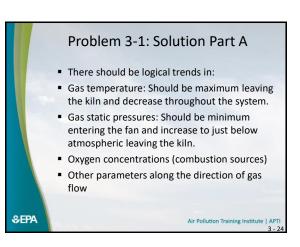


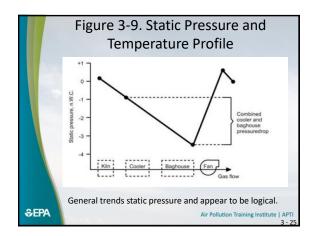





		ble 3-4. Materials of onstruction Symbols	
	CS	Carbon steel	1
	SS	Stainless steel	
	FRP	Fiberglass reinforced plastic	
	RL	Rubber lined	
	Ν	Nickel alloy	1
	WD	Wood	
≎epa		Air Pollution Training Institute A	рті - 16







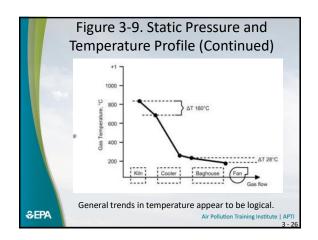
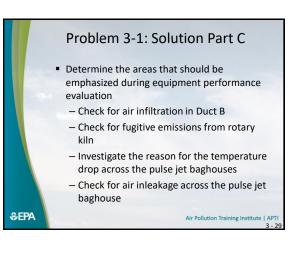
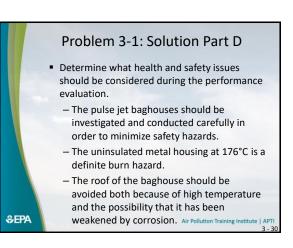
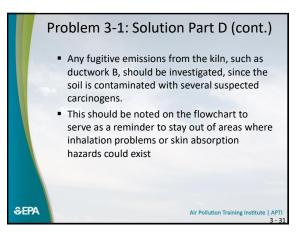


		Table 3-5. Baseline Data for theHazardous Waste Incinerator		
	Location	Temperature (°C)	Static Pressure (in. W.C.)	
	Kiln hood	810	-0.1	
	Evaporative cooler inlet	785	-1.0	
1	Evaporative cooler outlet	240	No Data	
	Baghouse inlet	195	No Data	
	Baghouse outlet	190	-5.1	
	Duct E	No Data	-1.5	
	Stack	No Data	-1.0	
\$epa	New York, N. Y.	Air Po	ollution Training Institute APTI 3 - 23	







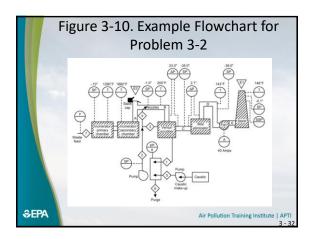
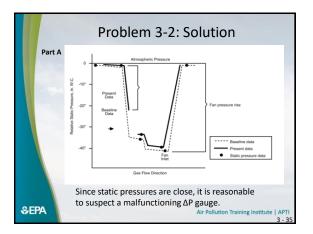
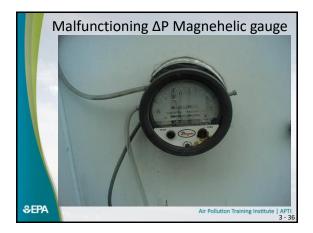
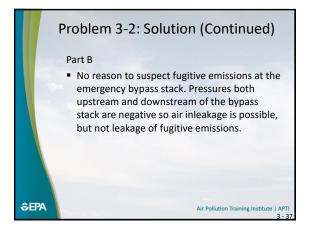
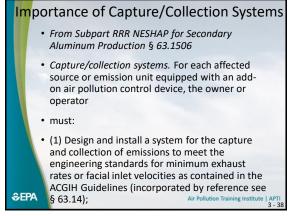

		Problem 3-1: Solution Part B		
	data to the exte	nt possible		
	Table 3-6. Gas Temperat	3-6. Gas Temperature profile for the hazardous waste incinerator (°C).		
		Present	Baseline	
	Kiln hood	819	810	
	Evaporative cooler inlet	659	785	
	Evaporative cooler outlet	234	240	
	Baghouse inlet	204	195	
	Baghouse outlet	176	190	
\$EPA	the evaporative co <u>Possible cause</u> : Air baghouse or malfu	Large differences in poler inlet and across r inleakage in duct E unctioning tempera dversely affect kiln of ate collection.	ss the baghouse. 3 and/or in the ture gauges.	

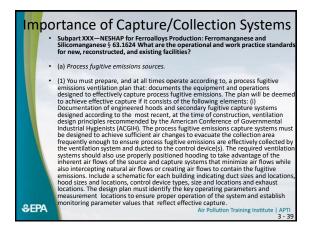
Table 3-7. Gas static pressure profile for the hazardous waste incinerator (in. W.C.		
	Present	Baseline
Kiln hood	-0.1	-0.1
Evaporative cooler inlet	-1.0	-1.0
Evaporative cooler outlet	No Data	No Data
Baghouse inlet	No Data	No Data
Baghouse outlet	-3.2	-5.1
Duct E	+0.4	-1.5
Stack	-0.1	-1.0
	ΔP between evapo let considerably lov	

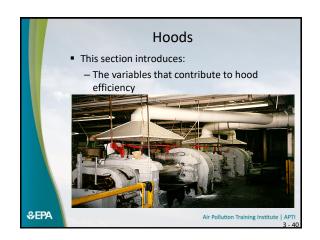


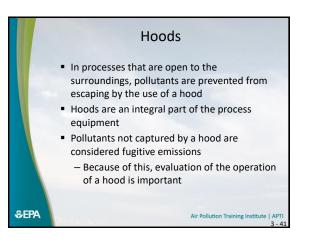


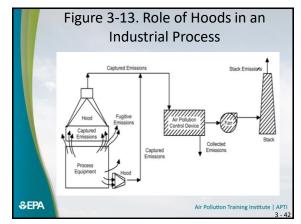


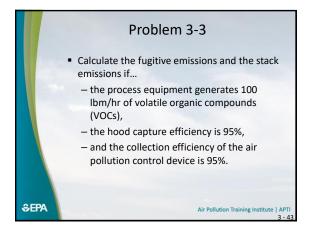

Table 3-8. Static pressures and static pressure drops (in. W.C.)			
	Static Pressure	Present	Baseline
	Incinerator primary chamber	-0.1	-0.12
	Duct B	-1.0	-1.10
	Mist eliminator	-35.0	-38.0
	Fan inlet (Duct D)	-39.0	-40.0
	Stack	-0.1	-0.1
	Static Pressure Drops	Present	Baseline
	Venturi scrubber	23.0	36.0
	Mist eliminator	2.1	1.6
\$epa		Air	Pollution Training Institute AP

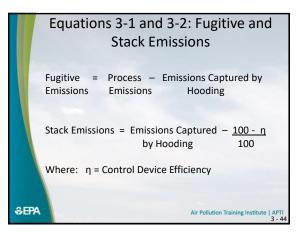

	Table 3-9. Gas temperatures (°F)			
		Present	Baseline	
	Incinerator secondary chamber	1860	1835	
	Duct B	200	197	
	Fan inlet	143	142	
	Stack	148	147	
≎epa	All temperatures are in close agreement. Air Pollution Training Institute APP			

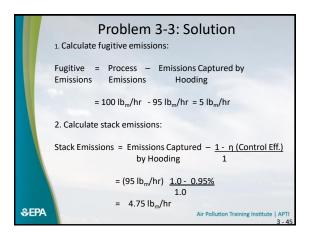


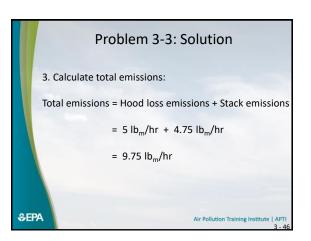


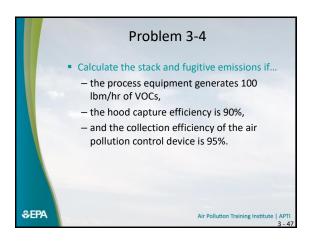


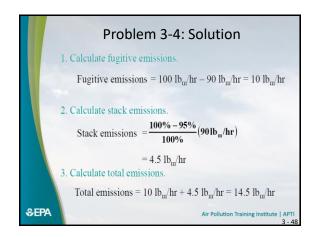


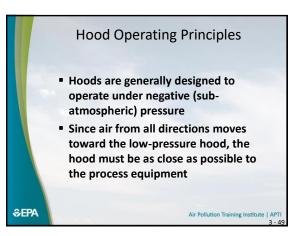


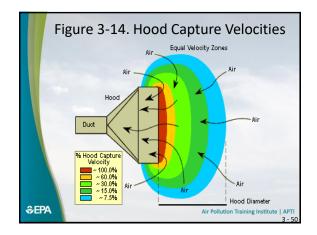




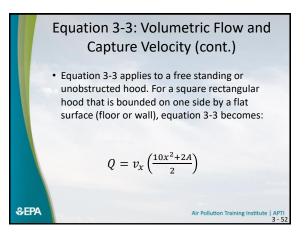

APTI Course 415 Control of Gaseous Emissions

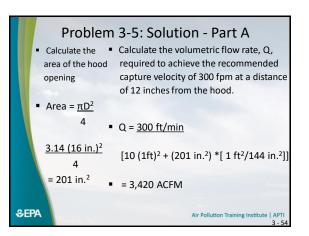


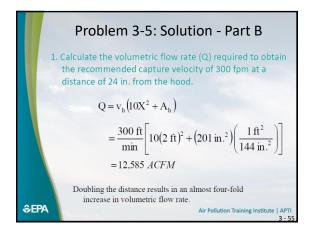


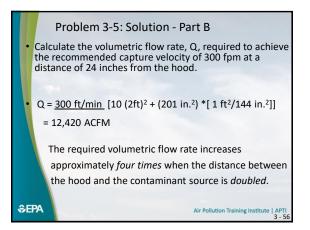


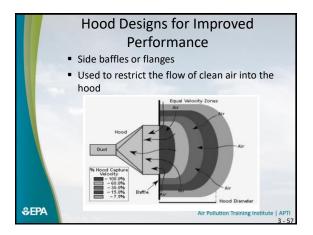


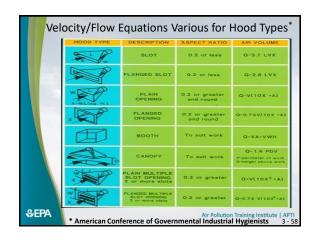


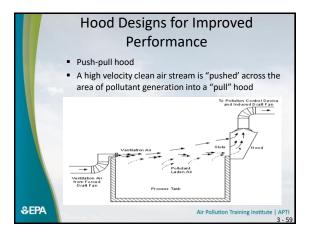


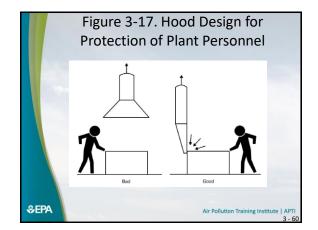


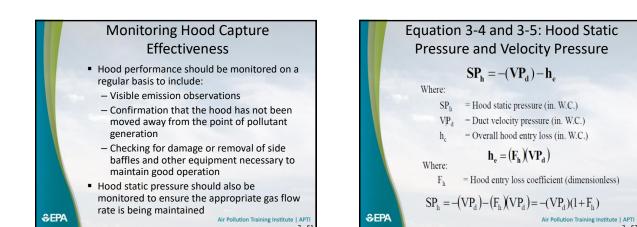


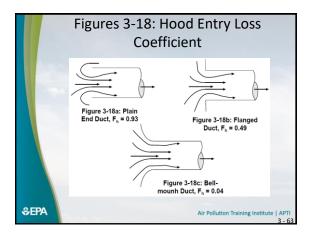


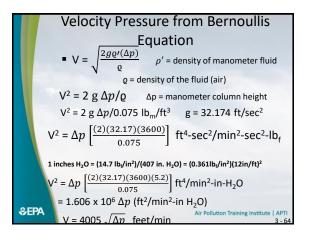


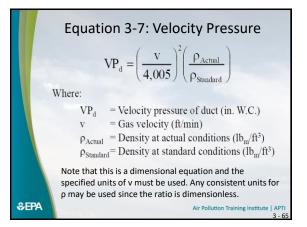


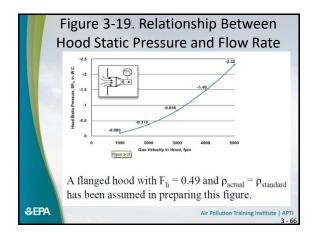


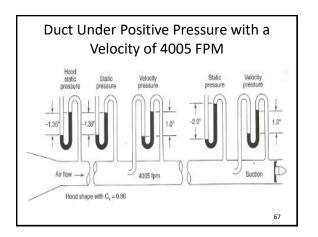


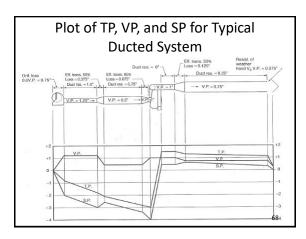


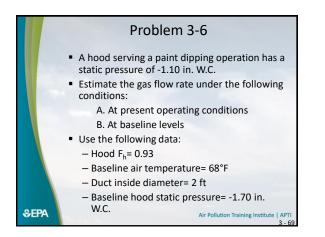


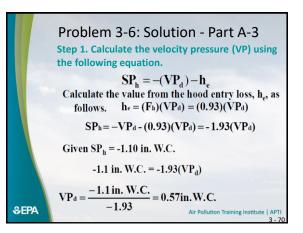


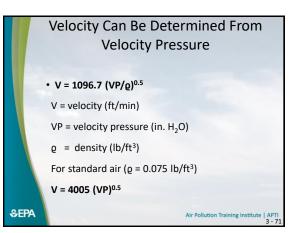


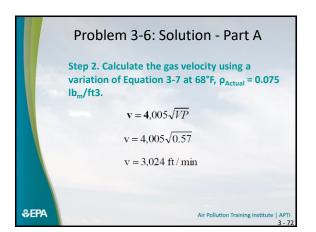


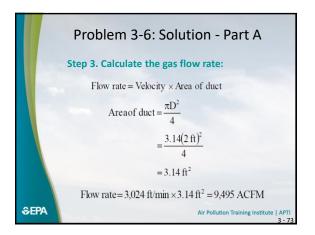


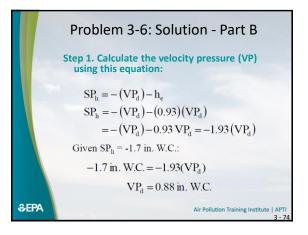


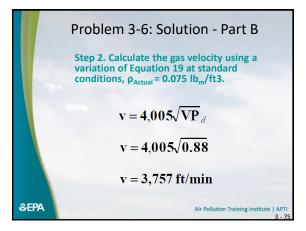


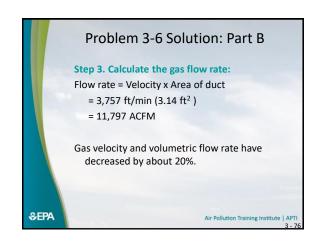


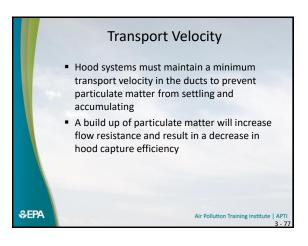


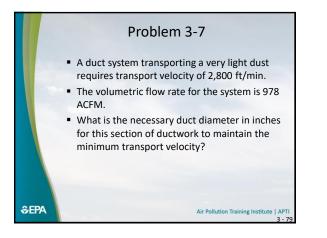


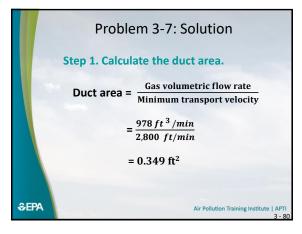


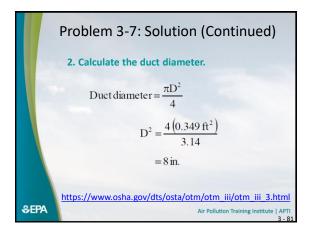


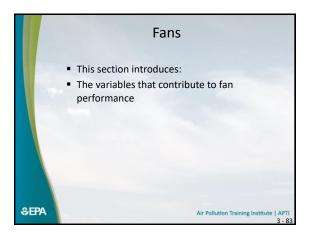


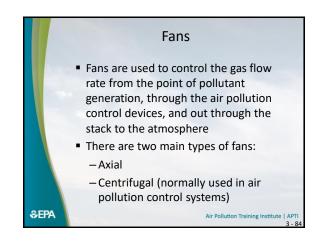


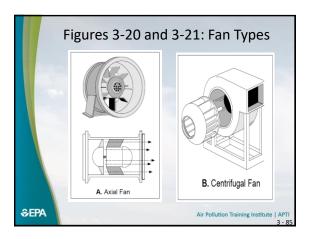


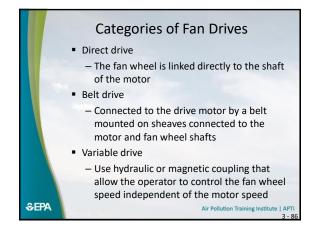


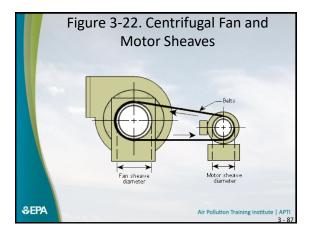



1	Table 3-10. (Recommended Tra	· · · · · · · · · · · · · · · · · · ·									
	Type of Pollutant Transport Velocity										
	Gases	≈ 1000 – 2000 ft/min									
	Light particulate loading	≈ 3000 – 3500 ft/min									
	Normal particulate loading	≈ 3500 – 4500 ft/min									
€epa	Provide State	Air Pollution Training Institute APTI 3 - 78									

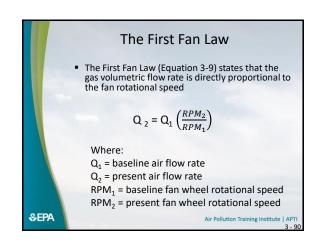


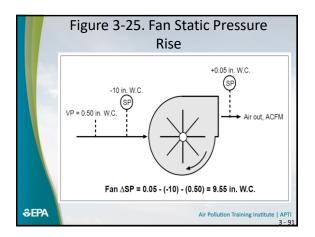


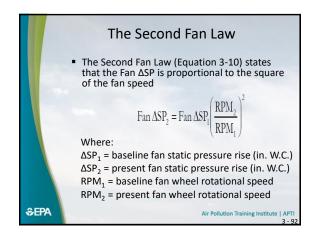


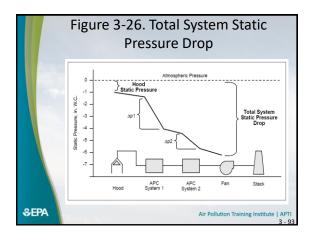


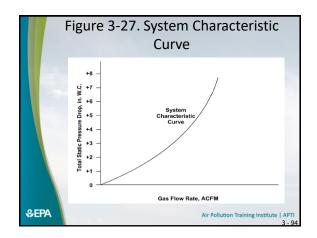


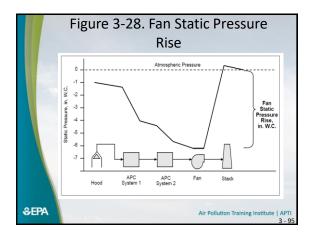


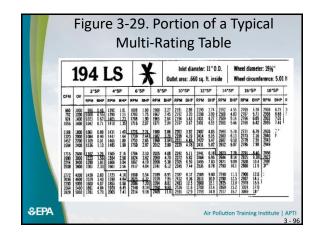


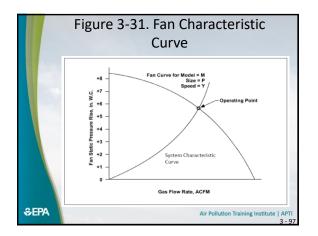


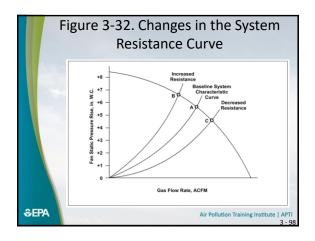


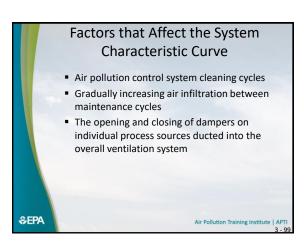


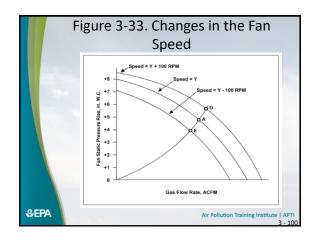


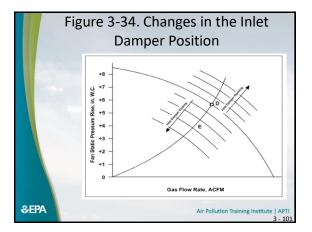


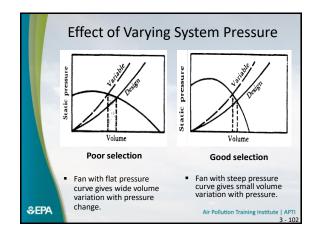


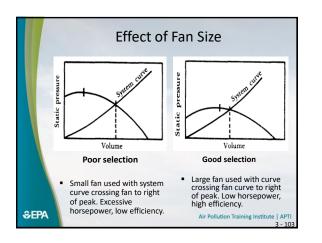


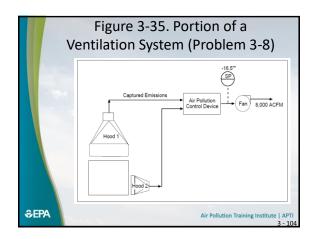


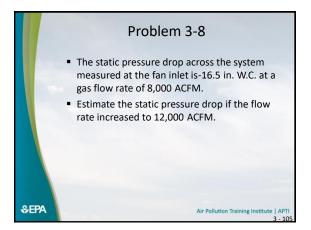


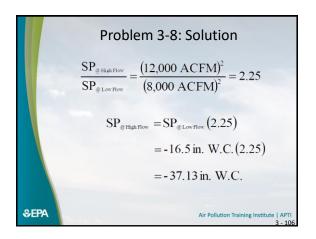


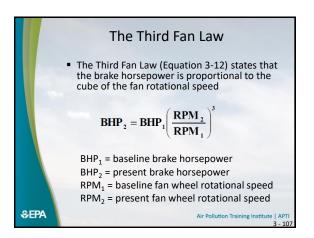


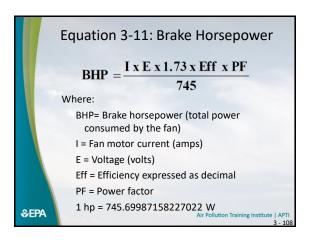


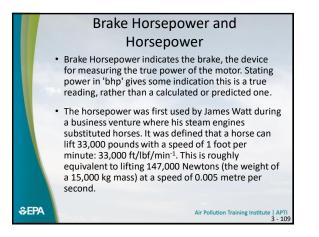




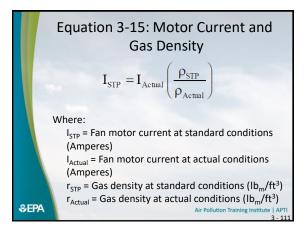


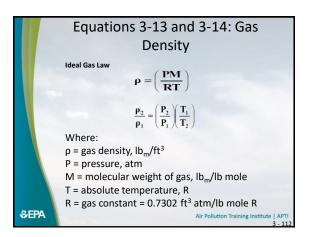


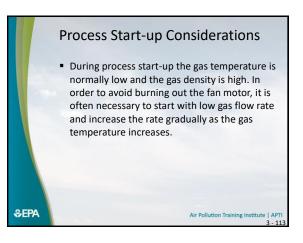


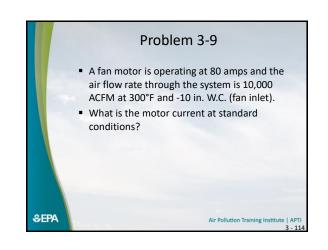


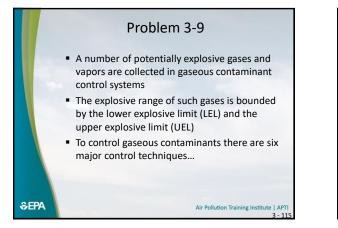


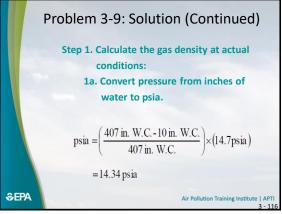


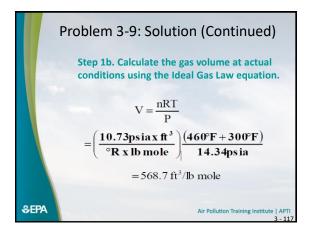


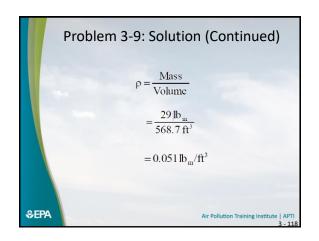


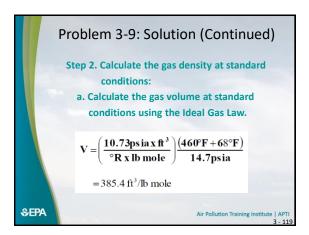


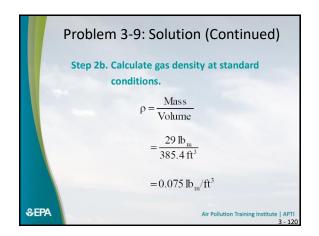


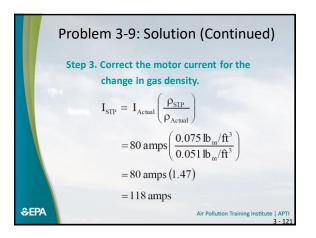


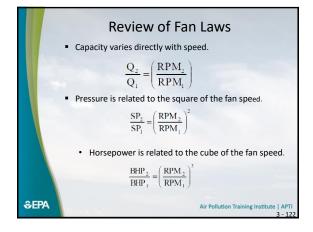


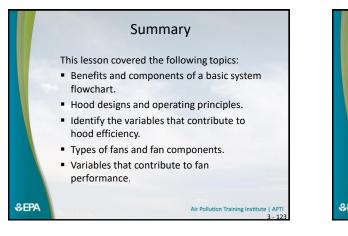


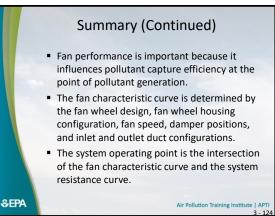


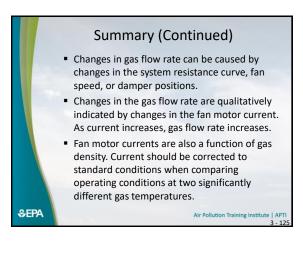


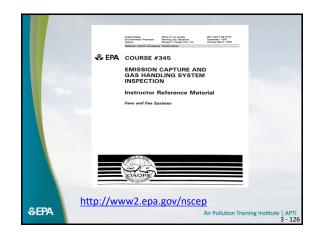


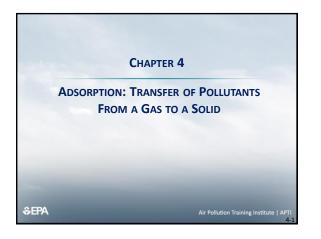


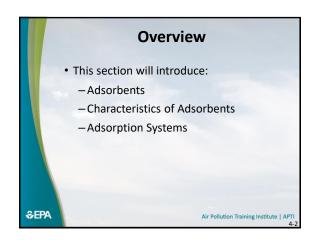


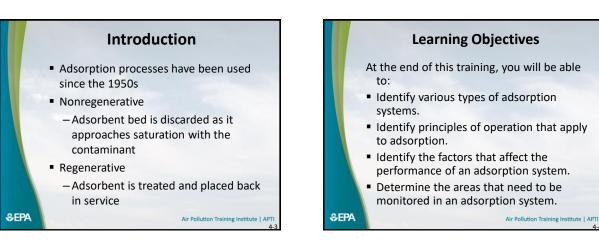


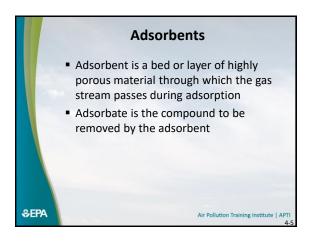


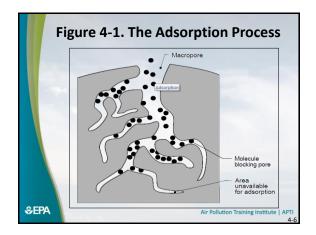


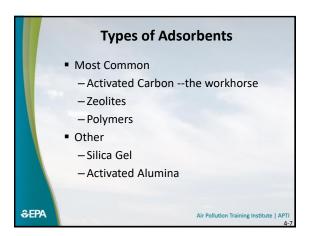


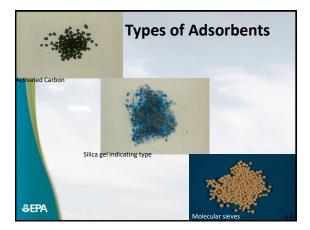


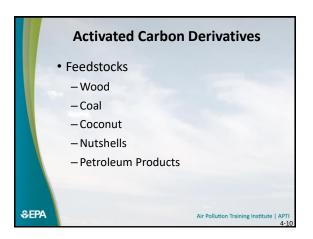


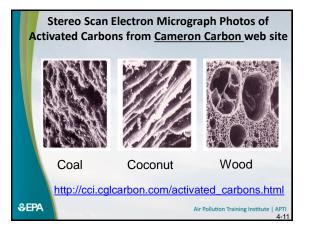


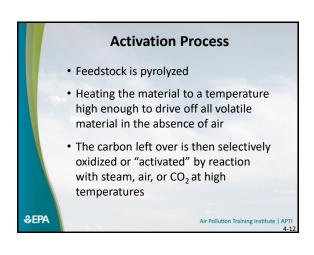


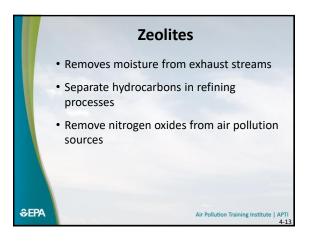




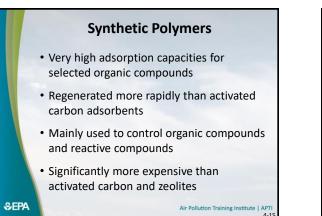


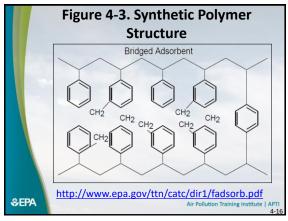


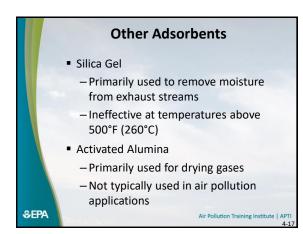


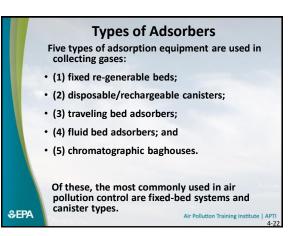

	Types of A	dsorbents
	Polar	Non-polar
	Silica gel	Activated Carbon
	Activated oxides	Polymeric adsorbents
	Molecular sieves	Zeolites (siliceous)
≎epa		Air Pollution Training Institute APT 4-8

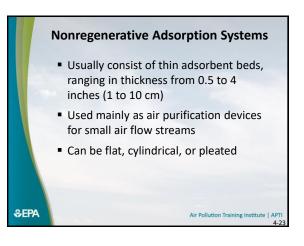




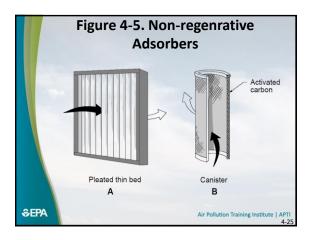


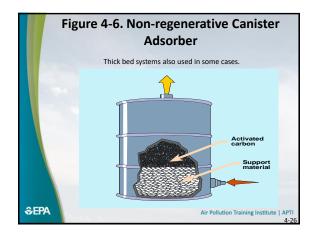


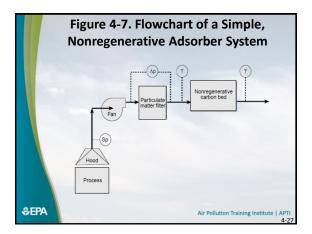


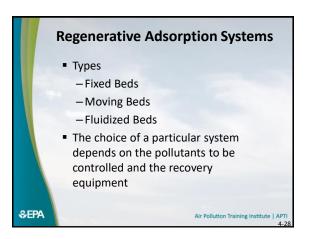

	Table 4		ysical P es of A	•		Major			
	Table 4-1. Physical properties of major types of adsorbents.								
	Adsorbent ²	Internal Porosity (%)	Surface Area (m ² /g)	Pore Bulk Dry Volume Density (cm ³ /g) (g/cm ³)		Mean Pore Diameter (Å)			
	Activated Carbon	55-75	600-1600	0.80-1.20	0.35-0.50	1500-2000			
	Activated Alumina	30-40	200-300	0.29-0.37	0.90-1.00	1800-2000			
	Zeolites (Molecular Sieves)	40-55	600-700	0.27-0.38	0.80	300-900			
	Synthetic Polymers ²		1080-1100	0.94-1.16	0.34-0.40				
\$€PA				Air	Pollution Trainin	ng Institute APTI 4-18			

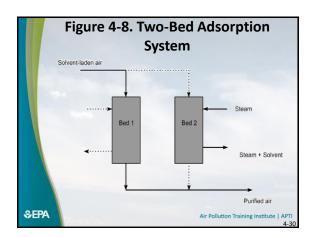
			dsor			Carbon
	Organic Compound	Boiling Point ^e F(^e C)	Molecular Weight	Water Soluble	Flammable Liquid	Lower Explosive Limit, % Vol.
1000	Aliphatic Heptane	209 (98.4)	100.2	No	Yes	1.20
	Hexane	209 (98.4) 156 (68.7)	100.2	NO	Yes	1.20
	Pentane	97 (36.1)	72.2	No	Yes	1.50
	Naptha	288 (142)	12.2	No	Yes	0.92
	Mineral Spirits	381 (194)		No	Yes	<1.00
	Stoddard Solvent	379 (193)		No	Yes	1.10
	Aromatic					
	Benzene	176 (80.0)	78.1	No	Yes	1.40
	Toluene	231 (110.6)	92.1	No	Yes	1.40
	Xylene	292 (144.4)	106.2	No	Yes	1.00
	Ester					
	Butyl Acetate	259 (126.1)	116.2	No	Yes	7.60
	Ethyl Acetate	171 (77.2)	88.1	Yes	Yes	2.50
EPA			continue	d	Air Polluti	on Training Institute

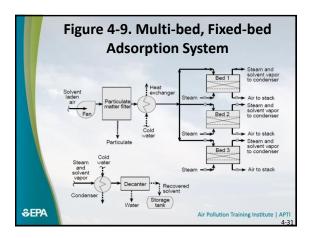

	Compounds Suitable for Carbon Adsorption									
	Organic Compound	Boiling Point ºF(ºC)	Molecular Weight	Solubility in Water	Flammable Liquid	Lower Explosive Limit, % Vol.				
	Halogenated Carbon									
	Tetrachloride	170 (76.7)	153.8	No	No	N.F.				
	Ethylene Dichloride	210 (98.9)	85.0	No	Yes	6.20				
	Methylene Chloride	104 (40.0)	84.9	Yes	No	N.F.				
	Perchloroethylene Trichloroethylene	250 (121.1)	165.8	No	No	N.F.				
	Trichloroethane	189 (87.2) 165 (73.9)	131.4 133.4	No No	No No	N.F. N.F.				
		105 (73.9)	133.4	INU	NO	IN.F.				
	Ketones Acetone	133 (56.1)	58.1	Yes	Yes	2.60				
	Diacetone Alcohol	293 (145.0)	116.2	Yes	Yes	2.00				
	Methyl Ethyl Ketone	174 (78.9)	72.1	Yes	Yes	1.80				
	Methyl Isobutyl									
	Ketone	237 (113.9)	100.2	Yes	Yes	1.20				
	Alcohols									
	Butyl Alcohol	241 (116.1)	74.1	Yes	Yes	1.40				
	Ethanol	165 (73.9)	46.1	Yes	Yes	4.30				
	Propyl Alcohol	205 (96.1)	60.1	Yes	Yes	2.10				
\$epa	N-74-7				Air Pollut	on Training Institute	APTI 4-20			

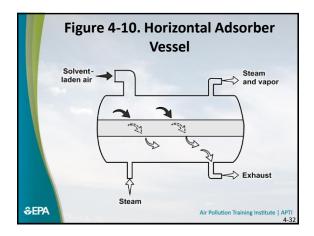

	Compounds Not So Adsor	
	Reactive Compounds	High Boiling Compounds
	Organic Acids	Plasticizers
	Aldehydes	Resins
	Monomers (some)	Long Chain HCs (+C ₁₄)
	Ketones (some)	Glycols, Phenols, Amines
\$epa		Air Pollution Training Institute APTI 4-21

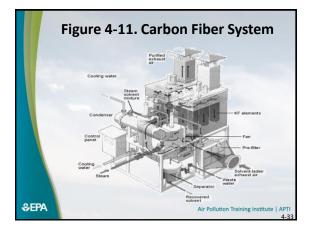


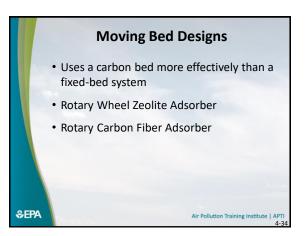


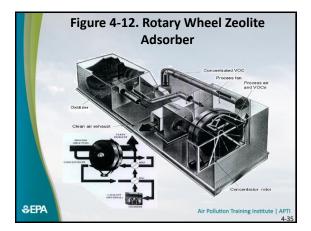


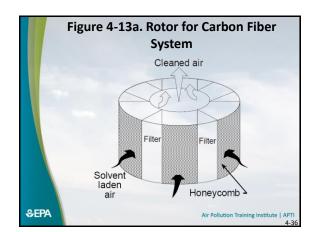


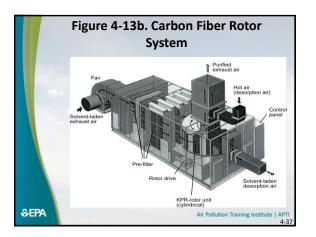


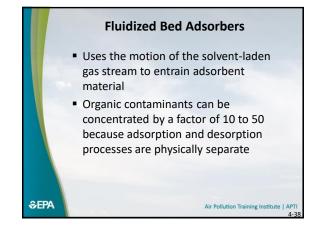


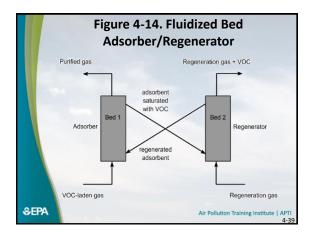


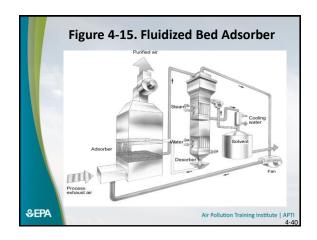


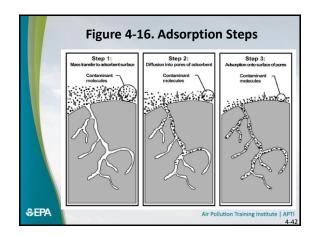


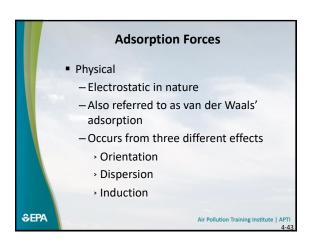


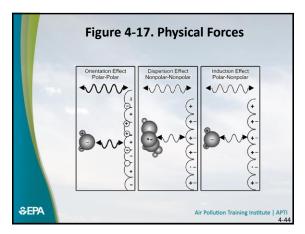


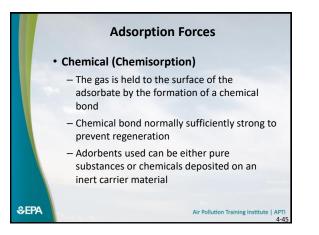


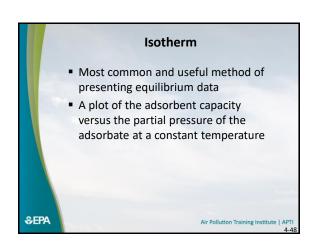
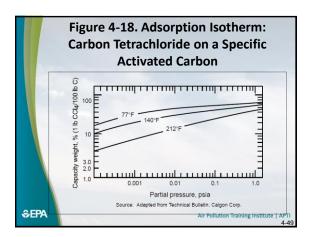


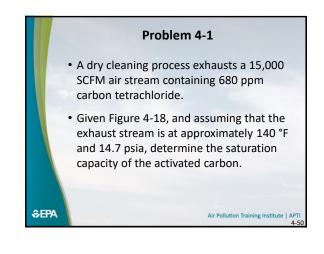


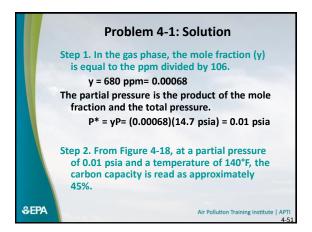


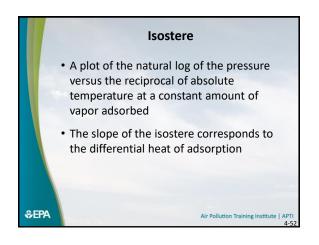


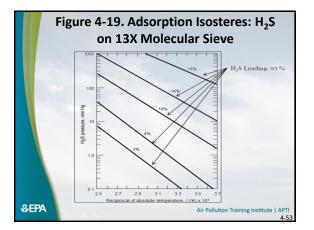


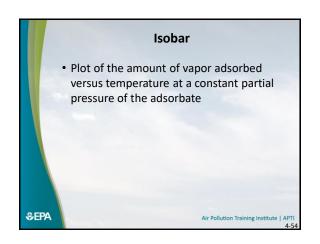



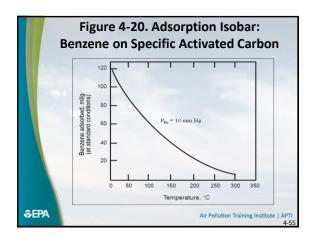

Table 4-2. Characteristics ofChemisorption and Physical Adsorption

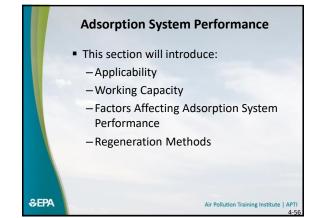

-		
	Chemisorption	Physical Adsorption
	Releases high heat, 10Kcal/gm mole	Releases low heat, 0.1K cal/gm mole
	Forms a chemical compound	Adsorbate retained by electrostatic forces
	Desorption difficult	Desorption possible
	Adsorbate recovery impossible	Adsorbate recovery possible
PA	Press of the second sec	Air Pollution Training Institute APTI 4-4

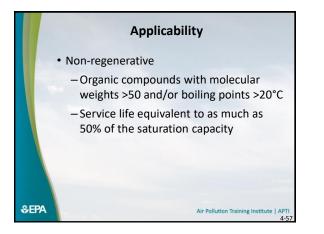


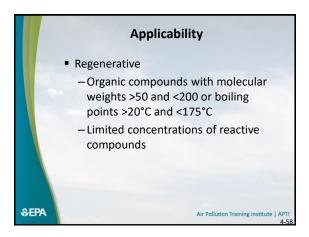


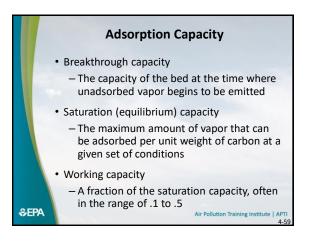


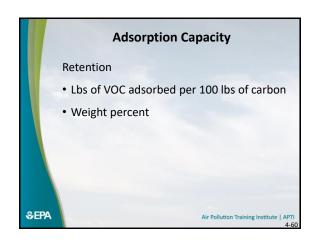


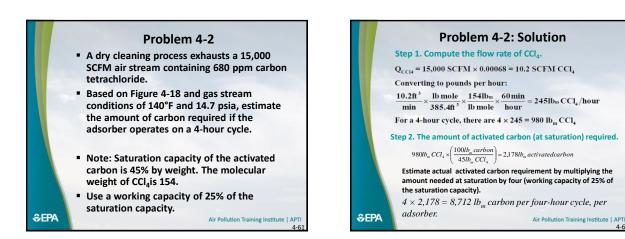


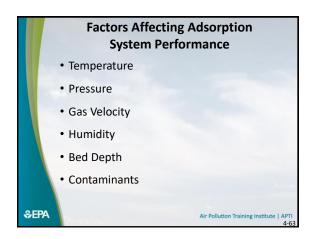


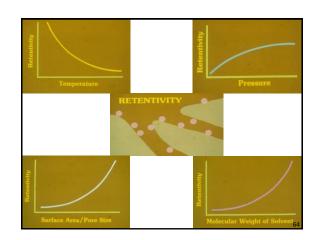


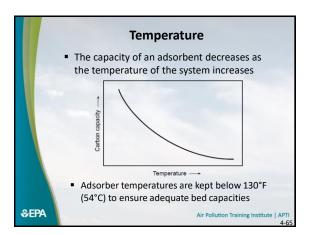


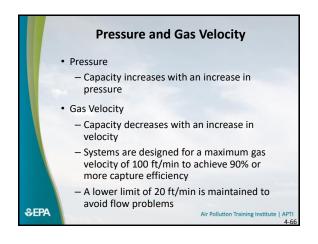


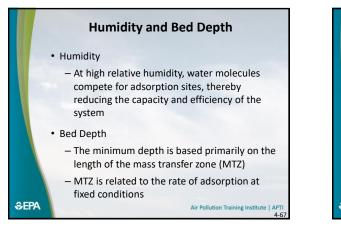


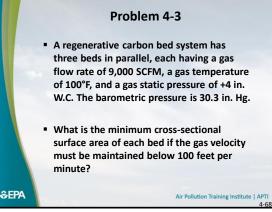


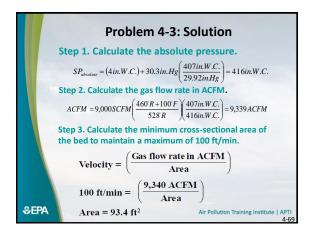


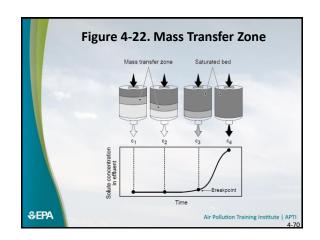


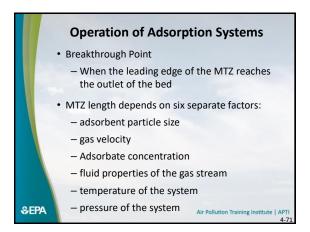


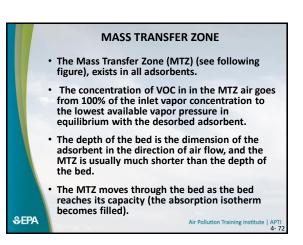


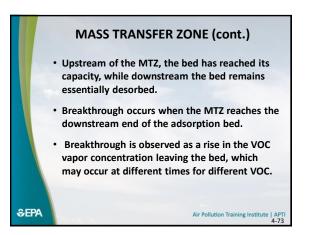


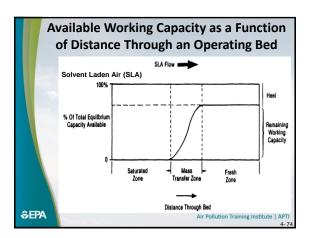


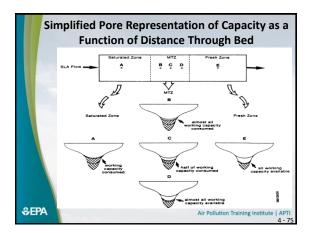


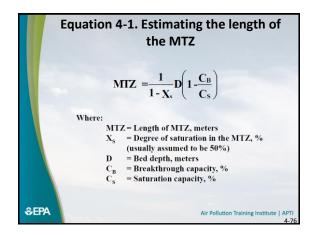


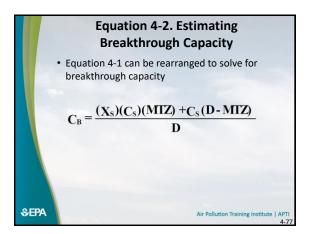


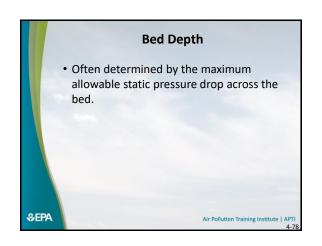


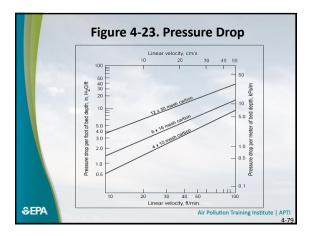


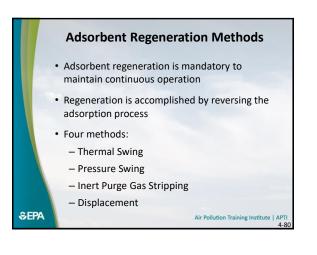


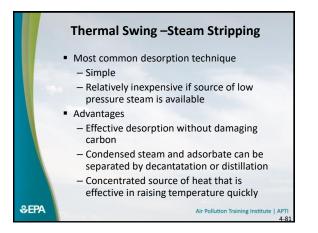


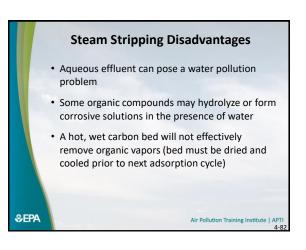


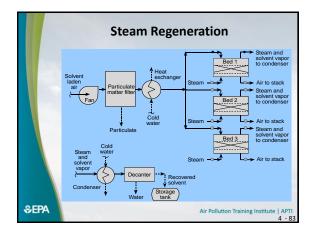




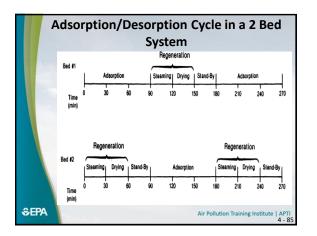


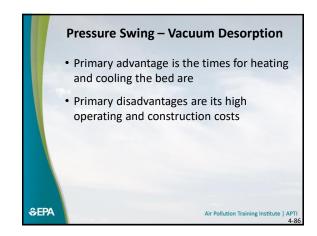


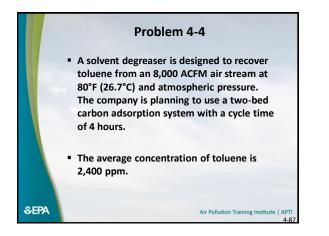


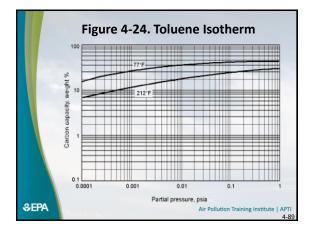


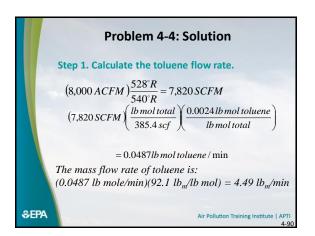


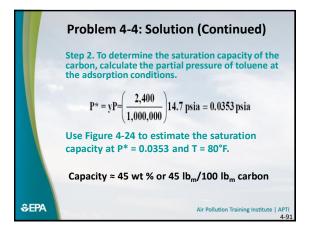


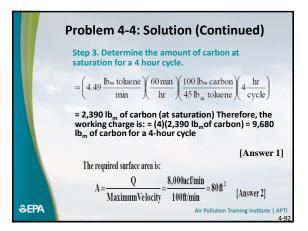


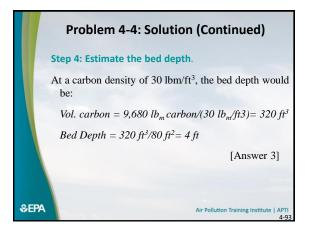


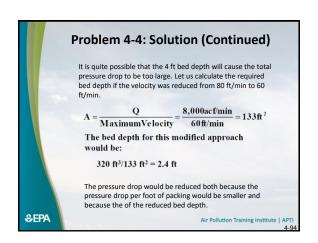


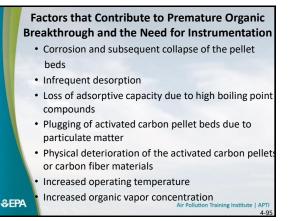


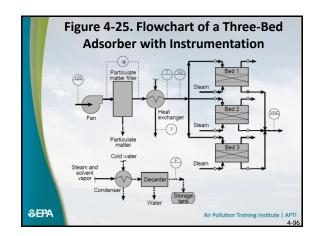


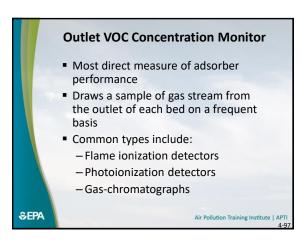


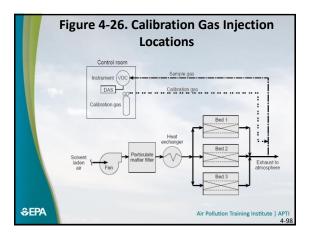


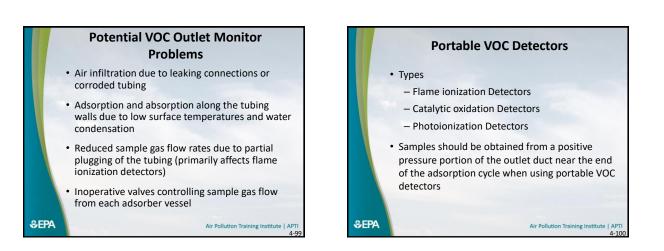


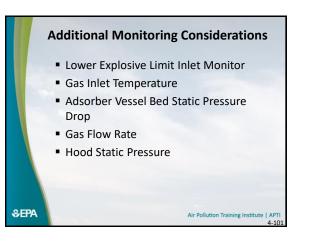


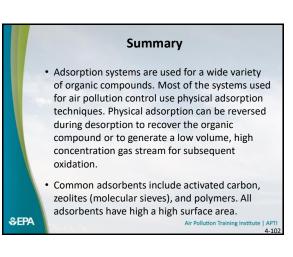


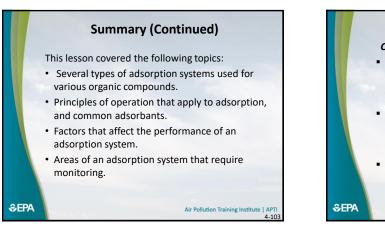


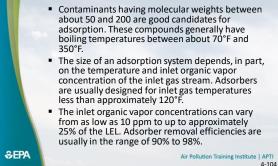


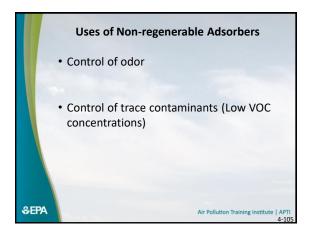




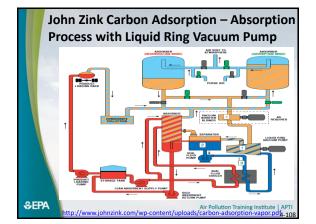


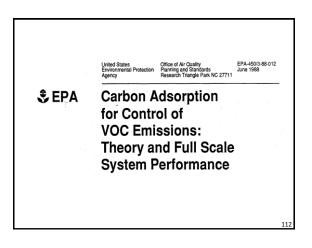


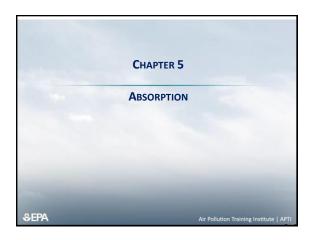


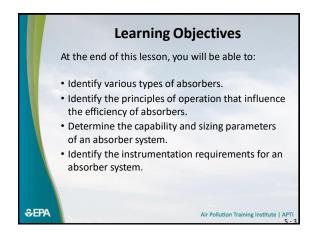


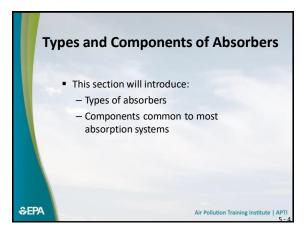
Summary (Continued)

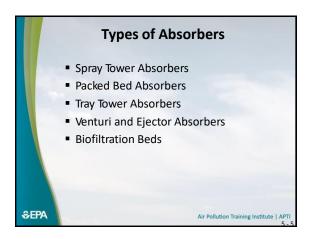

Conclusions

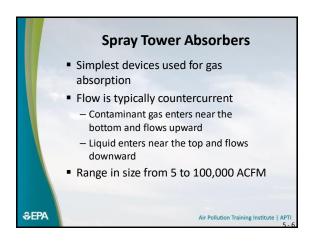


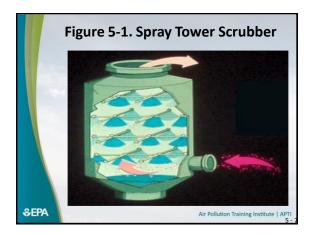


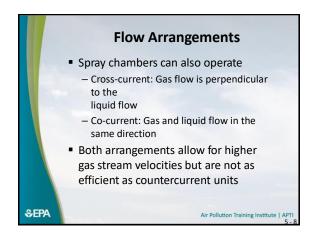

	-	Design Parameters						Conditie	me During	Test			A
Test Ho.		(SCFH)	Components [®] In inlet stream	Adapphate Loading (11/hr)	Temperature (F)	Stean Flow (1b/hr)		Components in	Adaozbate Leading T (1b/hc)	emperature	Steam Flow (1b/hc)	Ac+	Removal Efficiency
1		11,200	MEK - 602 Tolumna - 40	375	95	2,375	11,400	MEX - 1002	284	94 :	2,410	0.4	84.9 ^b
2	•	12,700	THF - 501 Toluena - 501	140	90	900	9,800	78F - 501 Toluene - 501	195 ⁶	74	600	2	99.7
3	•	12,700	THF - 501 Tolvens - 501	140	90	900	9,500	THF - 751 Toluene - 251	140	90	840	3.0	95.3 ⁴
٠	c	23,000	THP, Toluene, HEX, HIBK, Cycloberanone	600	85	2,400	19,800	THF, Toluene, MEK, MEBK, Cyclobesanone	1,260 ^e	81	2,960	0.4	94.8°
5	D	22,000	Hexane - 1002	1,300	95	4,130	17,700	Bemane - 1001	355	89	3,200	э	99.1
7	к	11,100	Toluene - 1001	204	100	1,170	9,100	Toluene - 100X	2496	104	3,000	5	97.6
	E	11,100	Toluena - 1001	204	100	1,170	7,800	Toluene - 1001	101	132 ^f	2,800	6.5	94.6 ⁸ .h
,	,	80,000	Toluene - 601 IPAC - 601	810	120	1,180	33,400	Toluene - 601 1PAC - 401	929 ⁶	91	3,400	0.2	97.5
10	,	80,000	Toluene - 601 IPAC - 601	810	120	1,180	33,960	Toluene - 601 1PAC - 402	892 ⁰	67	3,300	3.6	97.8
11	G	MR ^L	**	yik	MR	-	8,400	MEX - 951 MIBK, Toluene - 52	3,550	NR	10.	8 8.	98.9
12		NR	M	sR.	MR.	NR	48,800	Toluene - 100X	980	94 1	1,000	50	983
13	ı	75,000		58		-	61,200	Toluene - 301 Xylene - 41 Lactol Spirits - 661	1,279	100	10.	**	95.8
34	,	10,010 -	MEK - 20-50X	180 -	<200	12,000	60,000	THF - 5,410 (1b	80	120 1		Variable	
		83,700	Cyclohesatore - 20-502 THF - 5-252	2,800			70,000	per day) Toluene - 3,210 MEX - 4,480 Crolobasanone - 10,500		120 1	2,000	Variable	99.4
15	ĸ	24,000	Toluena - 5-251 MEK - 1001	1,200	NR	1,750	24,000	NEX - 1001	402 ^b	83	1,750	2	99.6
	L	28,000	Toluene - 953 Hexare - 51	860 - 1,670	120	3,000	28,000		HR	120	3,000	N/A ¹	99.5

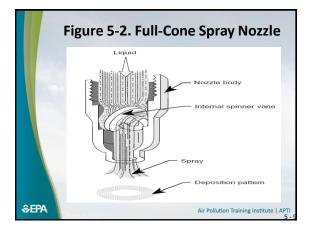


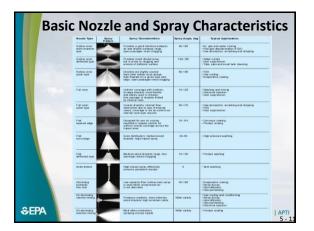


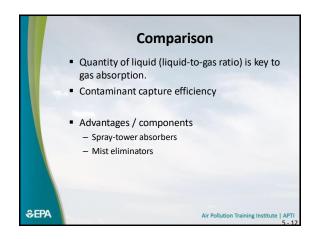


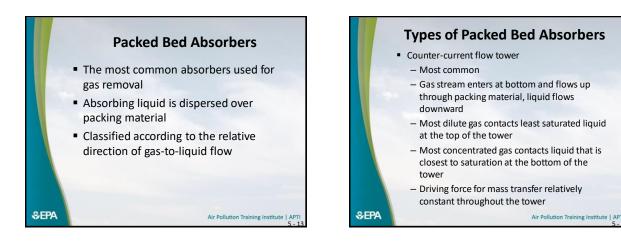


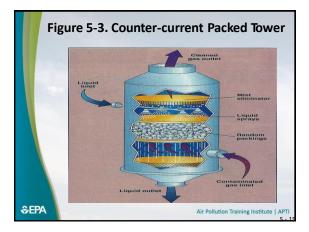


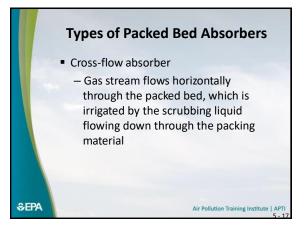


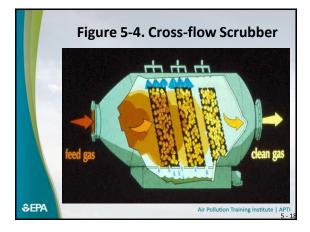


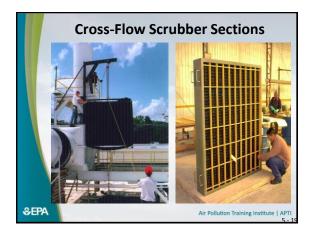




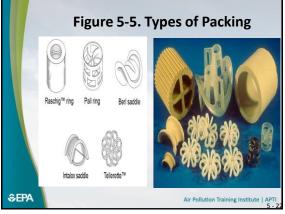


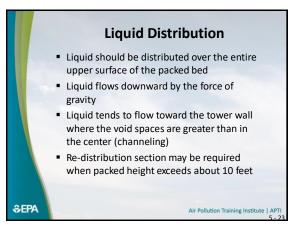


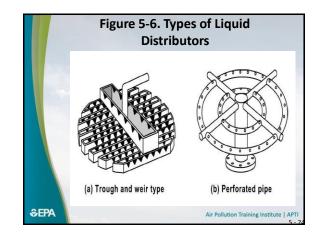


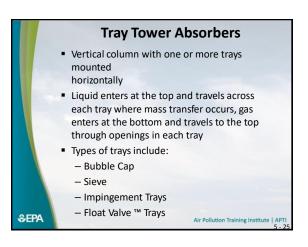


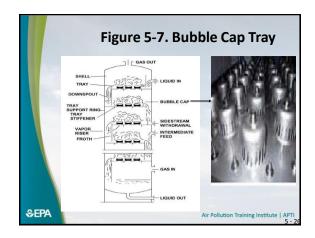


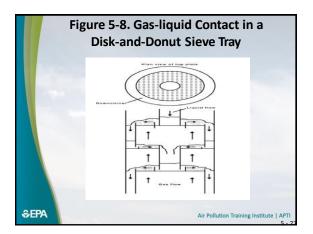


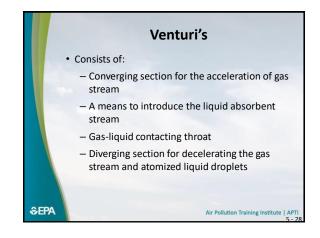


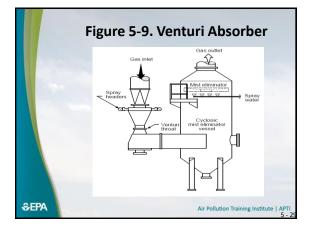


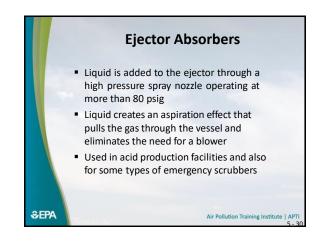

Temperature of 93 deg C. (200° F) with a vacuum of -914 mm (-36 in.) of water gauge and a flow volume of 387,000 ACFM.

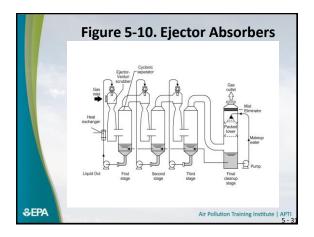


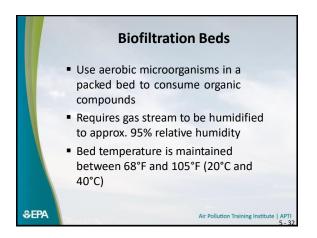


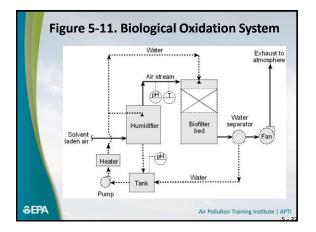


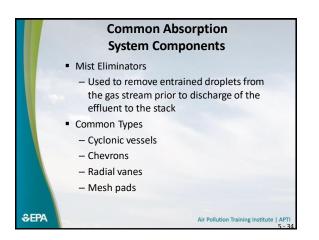


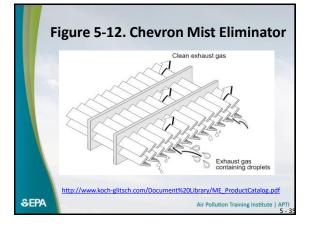


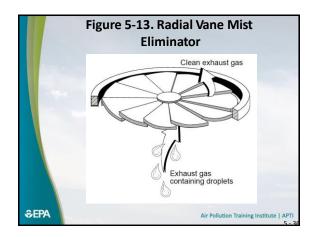


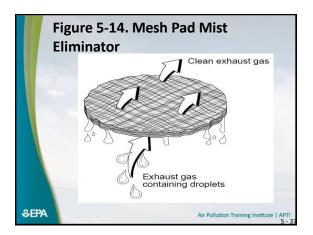


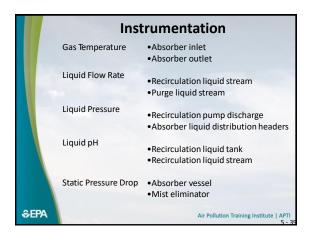




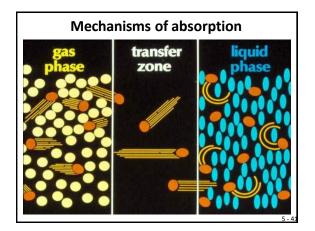


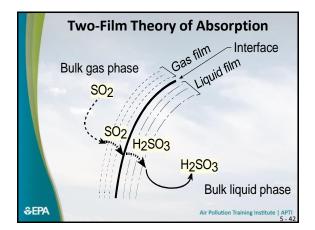


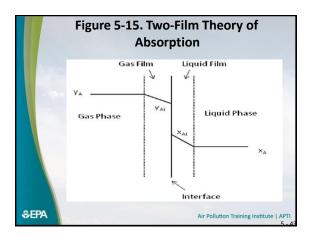


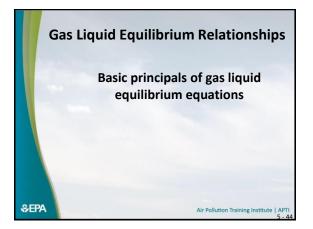


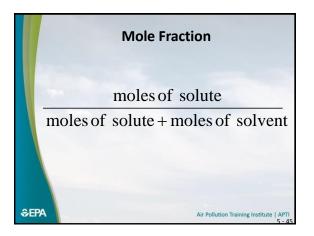


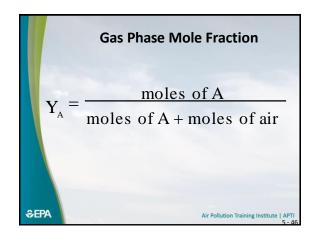


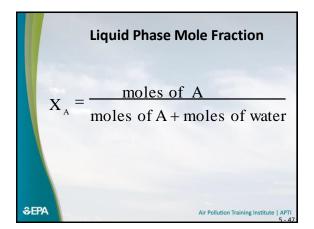


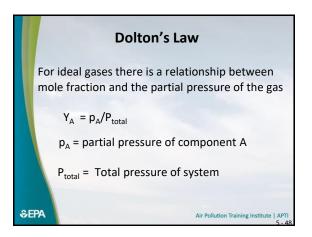


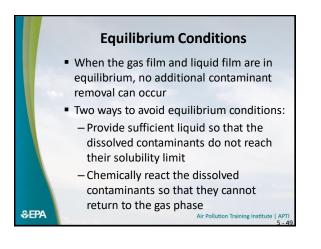


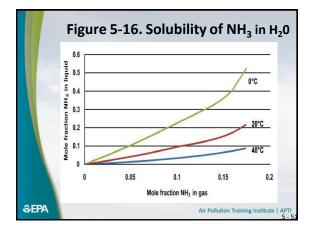


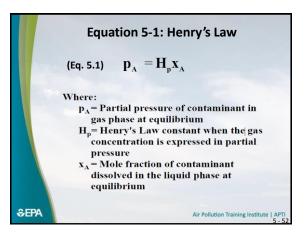


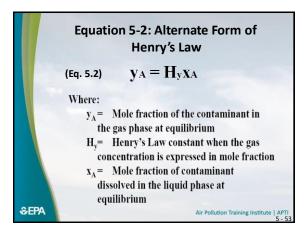


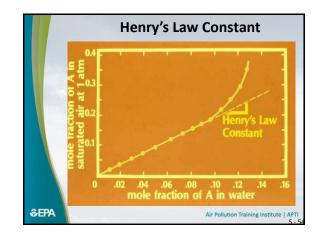


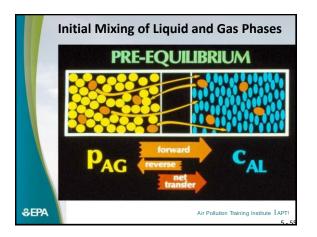


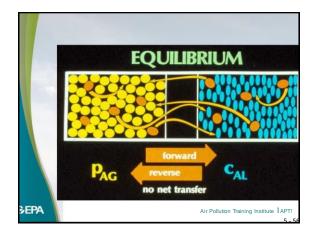


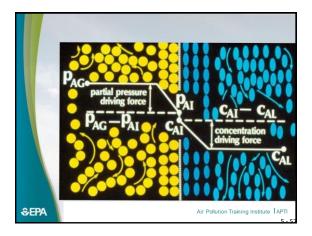


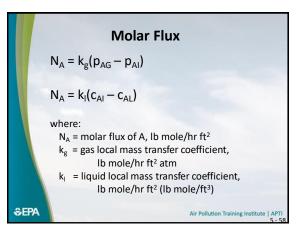


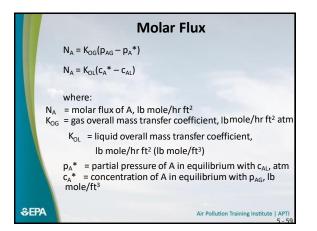


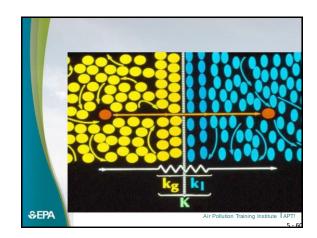

	Ammo	nia o	ver A	queou	ıs Solu	itions	, mm	Hg
	Wt. NH ₁ per 100 wts. H,O	0°C	10°C	20°C	30°C	40°C	50°C	60°C
	20.0	64	103.5	166	260	395	596	834
	15.0	42.7	70.1	114	179	273	405	583
	10.0	25.1	41.8	69.6	110	167	247	361
	7.5	17.7	29.9	50	79.7	120	179	261
	5.0	11.2	19.1	31.7	51	76.5	115	165
	4.0		16.1	24.9	40.1	60.8	91.1	129.2
	3.0		11.3	18.2	29.6	45	67.1	94.3
	2.5			15.0	24.4			77.0
	2.0			12.0	19.3			61.0
	1.6				15.3			48.7
	1.2				11.5			36.3
	1.0							30.2
	0.5							



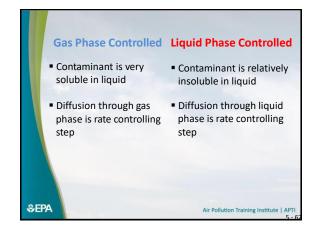


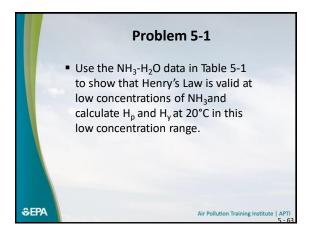


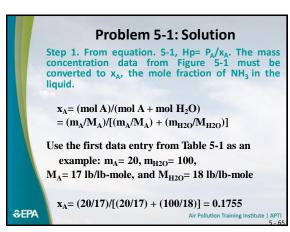


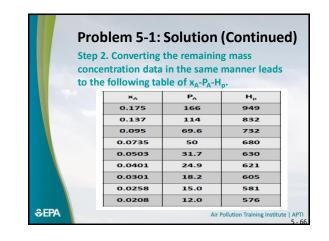


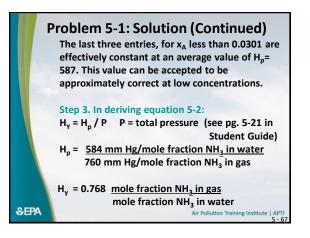


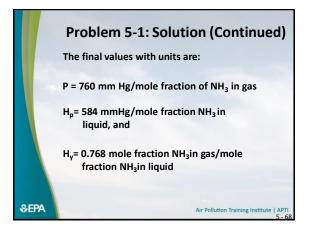


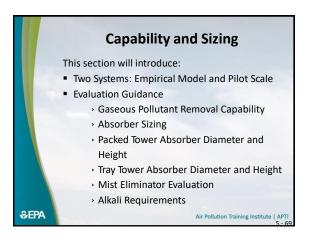


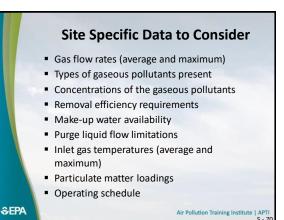


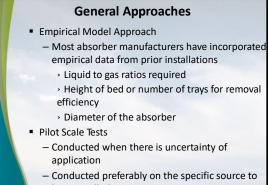


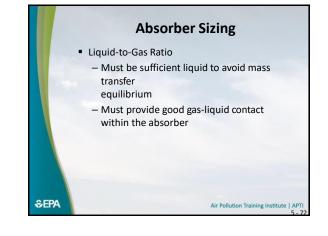


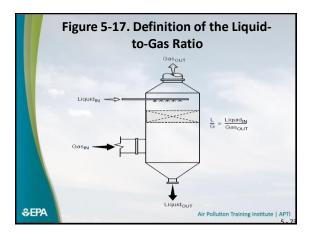


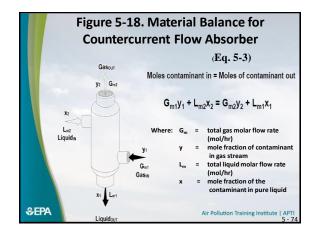

				ueou	-			
	Wt. NH ₂ per 100 wts. H ₂ O	0°C	10°C	20°C	30°C	40°C	50°C	60°C
1	20.0	64	103.5	166	260	395	596	834
1.1	15.0	42.7	70.1	114	179	273	405	583
	10.0	25.1	41.8	69.6	110	167	247	361
	7.5	17.7	29.9	50	79.7	120	179	261
	5.0	11.2	19.1	31.7	51	76.5	115	165
	4.0		16.1	24.9	40.1	60.8	91.1	129.2
	3.0		11.3	18.2	29.6	45	67.1	94.3
	2.5			15.0	24.4			77.0
	2.0			12.0	19.3			61.0
	1.6				15.3			48.7
	1.2				11.5			36.3
	1.0							30.2
	0.5							

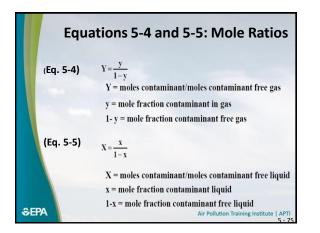


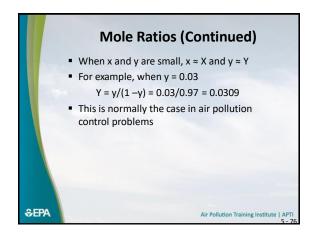


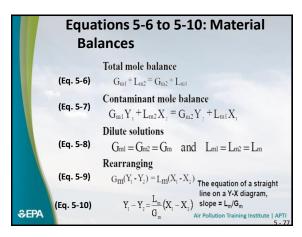


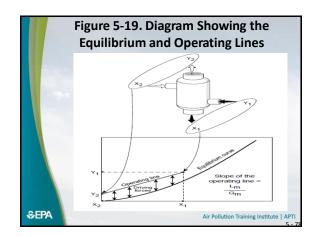


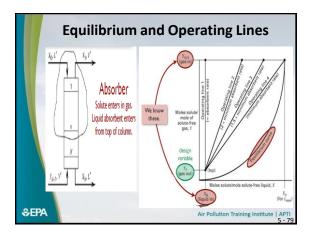


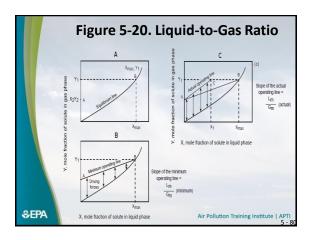

€PA

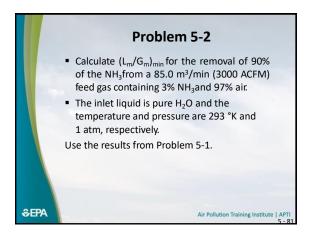


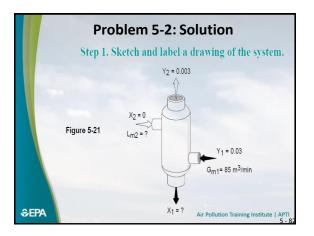

- - Height of bed or number of trays for removal
- Conducted preferably on the specific source to be controlled
- Costly and time consuming

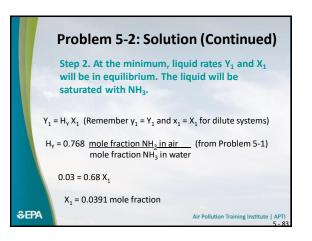


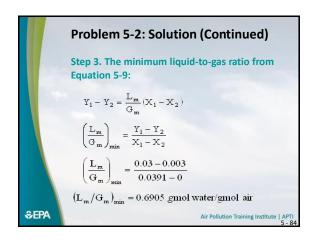


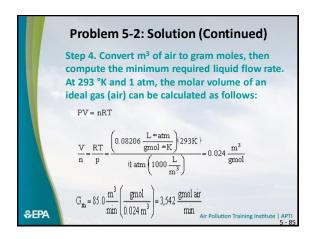


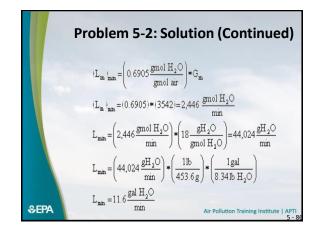


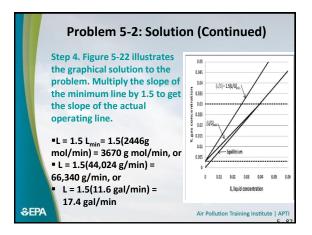


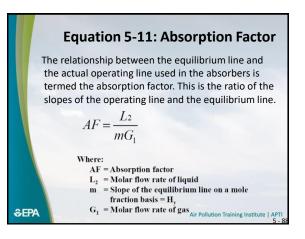


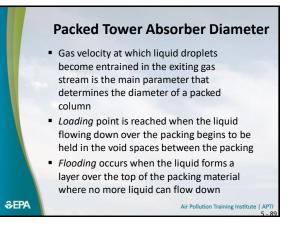


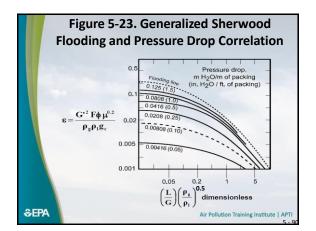


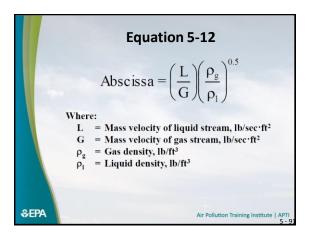


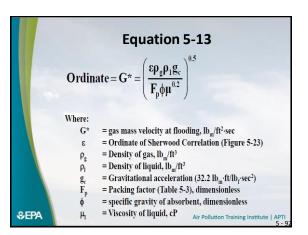


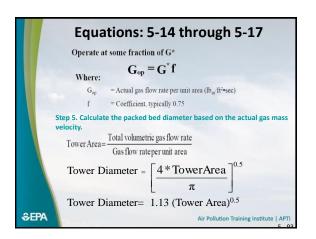


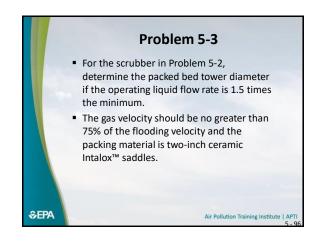


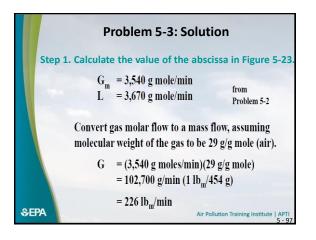


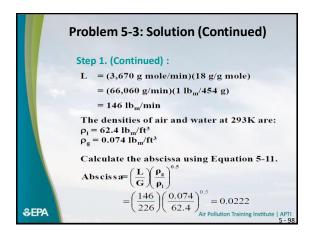


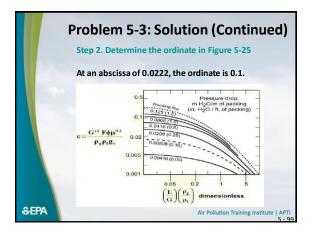


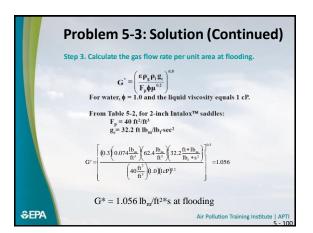


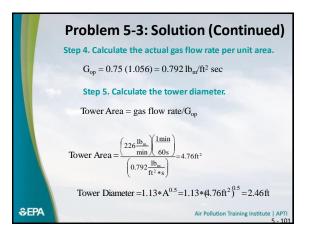


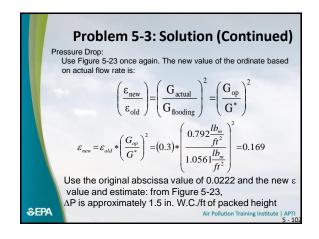


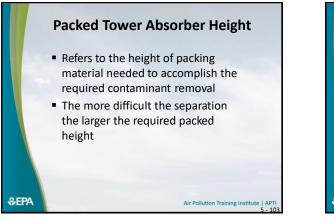


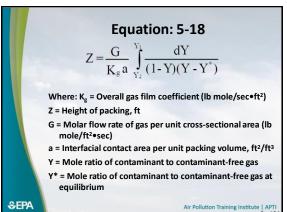

Packing	Size, (in.)	Weight, (lb _m /ft ³)	Surface Area, (ft ² /ft ³)	Void Fraction, (%)	Packing Factor, F _p (ft ² /ft ³)
Raschig™ Rings (Ceramic, Porcelain)	1.0 1.5 2.0 3.0	44 42 38 34	58 36 28 19	70 72 75 77	155 95 65 37
Raschig™ Rings (Steel)	1.0x1/32 2.0x1/16	40 38	63 31	92 92	115 57
Berl™ Saddles (Ceramic Porcelain)	1.0 2.0	48 38	79 32	68 75	110 45
Intalox™ Saddles (Ceramic)	1.0 2.0	44 42	78 36	77 79	98 40

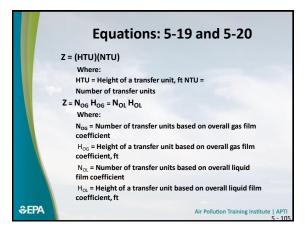

	Packing	Size, (in.)	Weight, (lb _m /ft ³)	Surface Area, (ft ² /ft ³)	Void Fraction, (%)	Packing Factor, F _p (ft ² /ft ³)
	Intalox™ Saddles (Ceramic)	1.0 2.0	44 42	78 36	77 79	98 40
	Intalox™ Saddles (Plastic)	1.0 2.0 3.0	6.0 3.8 3.3	63 33 27	91 93 94	30 20 15
-	Pall™Rings (Plastic)	1.0 2.0	5.5 4.5	63 31	90 92	52 25
	Pall™Rings (Metal)	1.5 x 0.03	24	39	95	28
	Tellerette™	1.0 2.0 3.0	7.5 3.9 5.0	55 38 30	87 93 92	40 20 15

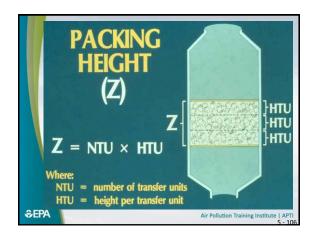


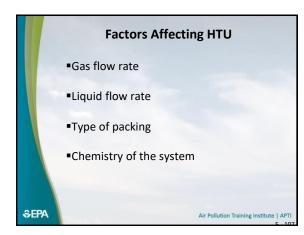


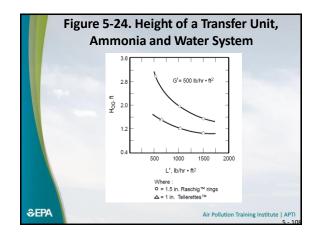


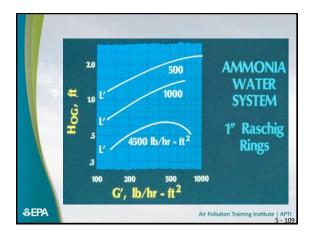


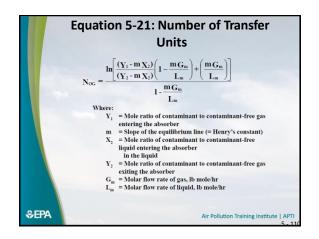


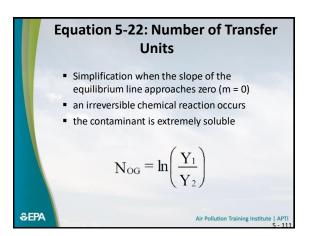


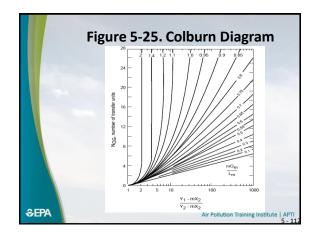


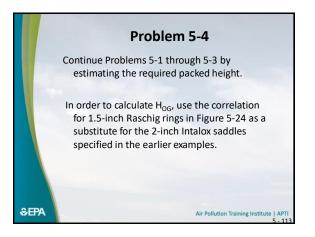


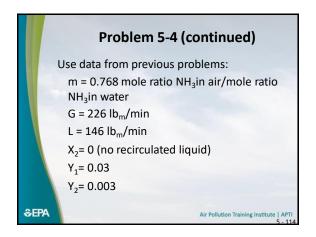


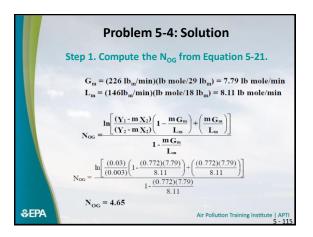


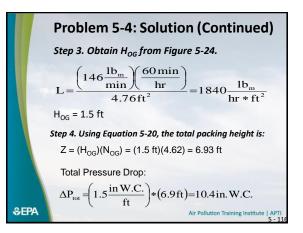


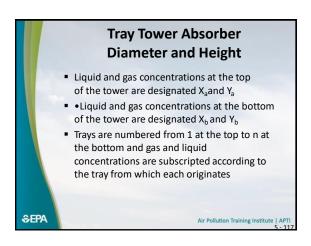


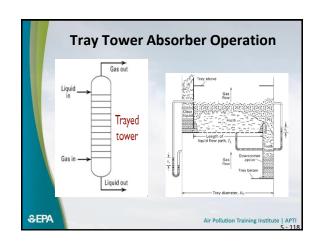


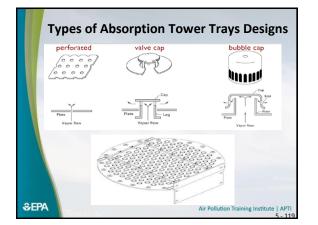


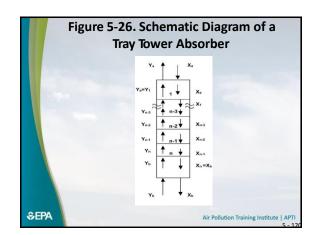


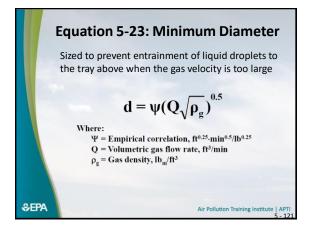


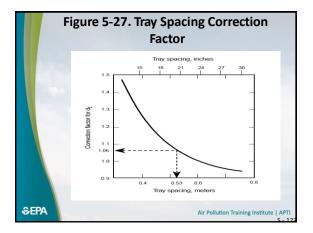


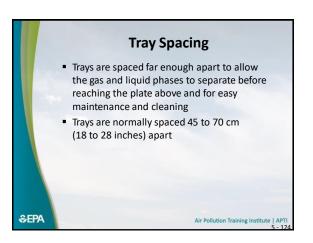


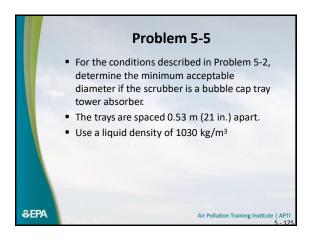


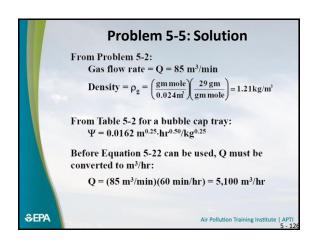


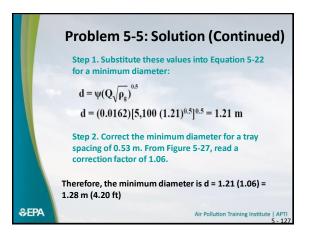


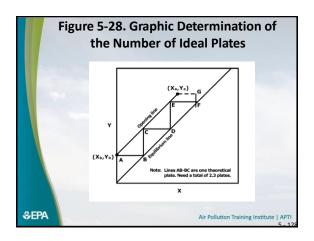


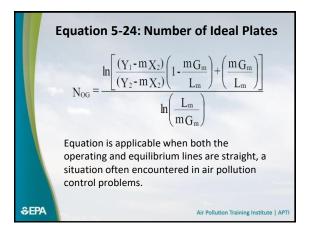


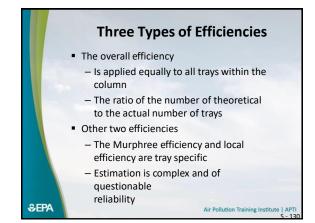


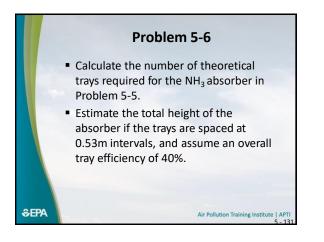


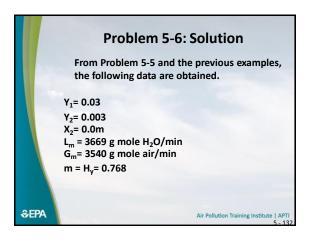

Tray	Metric ¹	English ²	
Bubble Cap	0.0162	0.1386	
Sieve	0.0140	0.1198	
Valve	0.0125	0.1069	
1. <u>Metric (expressed</u> (expressed in m ³ /	in m ^{0.25} . hr ^{0.5} /kg ^{0.} hr) and r _e (expresse		
	hr) and r _g (expresse d in ft ^{0.25} min ^{0.5} /lb ^{0.2}	d in kg/m³).	
(expressed in m ³ /l 2. <u>English</u> (expressed	hr) and r _g (expresse d in ft ^{0.25} min ^{0.5} /lb ^{0.2}	d in kg/m³).	
 (expressed in m³/l English (expressed ACFM and egexpr Directly applicable 	hr) and r _g (expresse d in ft ^{0.25} min ^{0.5} /lb ^{0.2} essed in lb/ft ³ e when tray spacin _i vity is 1.05. For oth	d in kg/m³). ¹⁵) for use with Q in	

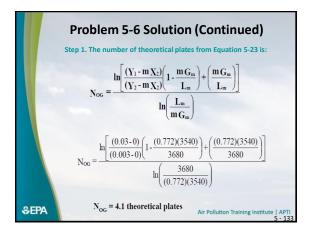


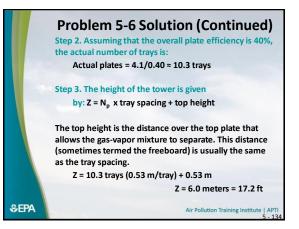


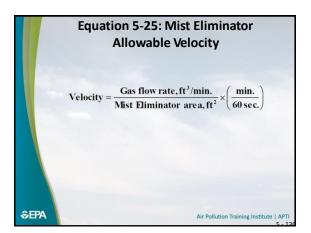




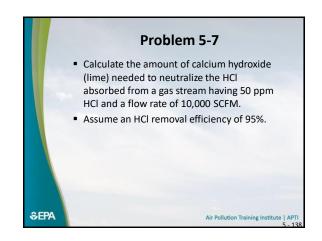


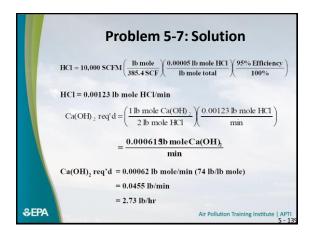


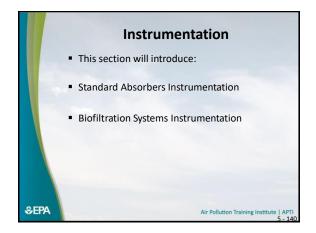


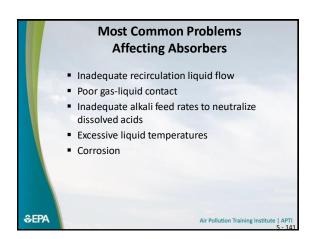


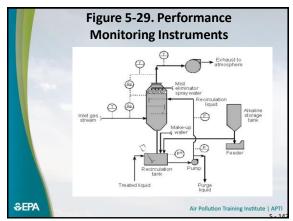
1	Table 5-4. Gas Velocities Through Mist Eliminators ¹						
		IVIIST EIIM	linators				
	Mist Eliminator Type	Orientation	Maximum Gas Velocity, ft/sec				
	Zigzag ²	Horizontal	15 - 20				
	Zigzag ²	Vertical	12 - 15				
	Mesh Pad	Horizontal	15 – 23				
	Mesh Pad	Vertical	10 - 15				
	Woven Pad ³	Vertical	7 – 15				
	Tube Bank	Horizontal	18 - 23				
	Tube Bank	Vertical	12 - 16				
≎epa	1.Source, Reference 1 2.Termed chevron in r 3.Source, Reference 1	remainder of manual	Air Pollution Training Institute APTI 5 - 135				

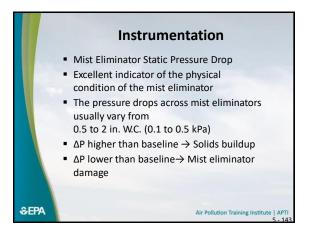

Alkali Requirements

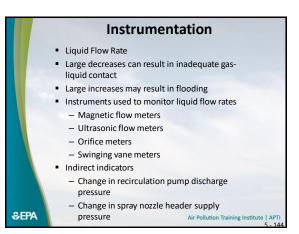

- Absorption systems may require an alkali addition system if the gas stream is acidic
- Sulfur dioxide (SO₂), hydrogen chloride (HCl), and hydrogen fluoride (HF) are the most common acid gases
- Calcium hydroxide is the most common alkali material used to neutralize acid gases

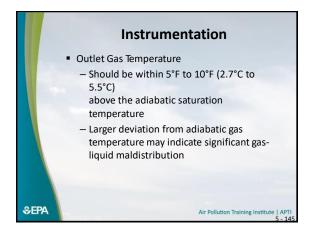

€PA

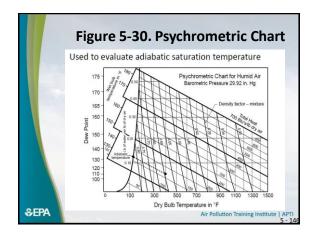

Reaction 5-1 SO₂ + Ca(OH)₂ + 0.5 O₂ \rightarrow (CaSO₄) + H₂O Reaction 5-2 2HCl + Ca(OH)₂ \rightarrow Ca⁺² + 2Cl⁻ + 2H₂O Reaction 5-3 2HF + Ca(OH)₂ \rightarrow Ca⁺² + 2F⁻ + 2H₂O

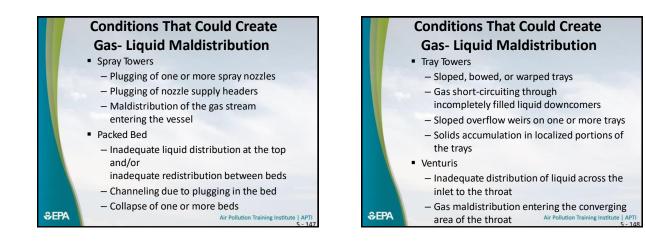

Air Pollution Training Institute | APTI



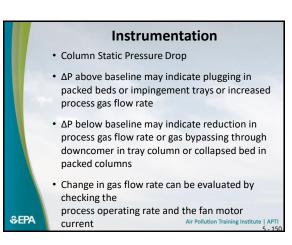


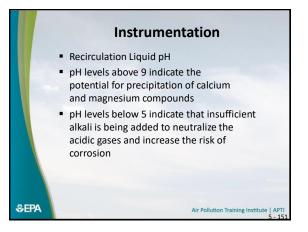




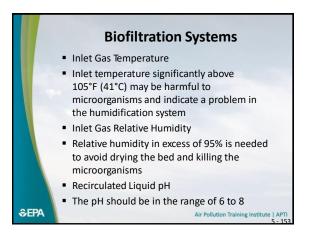


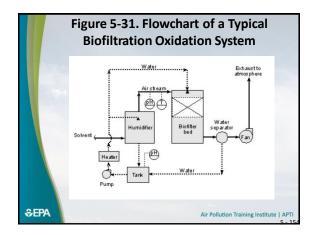
Conditions That Could Create Gas- Liquid Maldistribution

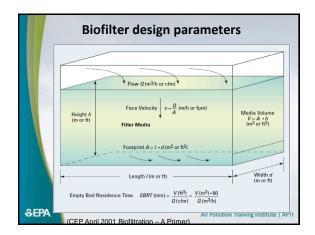

Ejectors

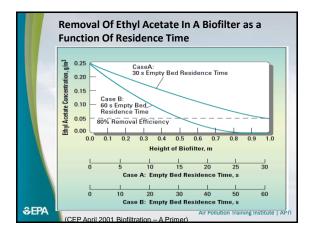

€EPA

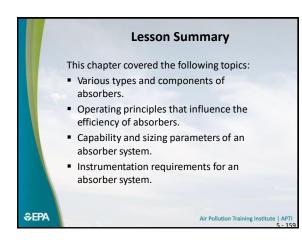
 Inadequate distribution of liquid across the ejector inlet

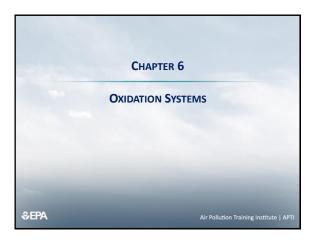

- Erosion of the ejector nozzle

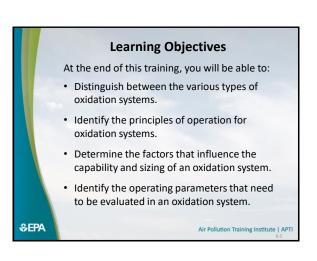

Air Pollution Training Institute | APTI

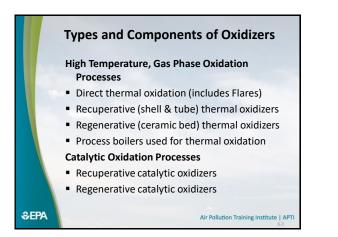




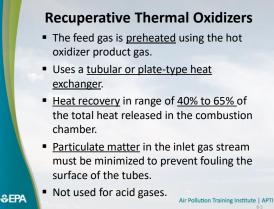


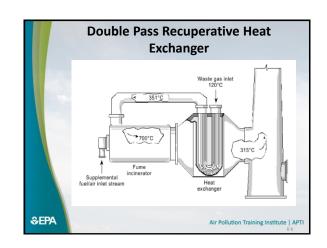


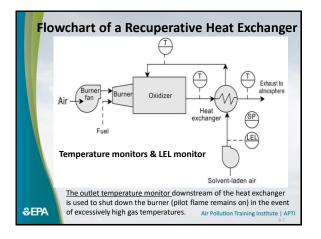


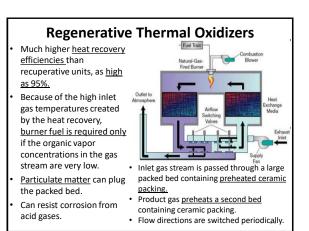

Application (Reference)	Contaminant(s)	Loading	Removal	Biofilter Type
Yeast Production Facility (1)	Ethanol, Aldehydes	35,000 cfm/500 yd ³ media, 1 g/m ³	Overall VOC reduction of 85%	Media filter
Plastics Plant VOC Emissions Control (1)	Toluene, Phenol, Acetone	1,000 m ³ /h	80%-95%	Media filter
Pharmaceutical Production (2)	Organic carbon	1,000 m ³ /h, 2,050 mg/m ³ (5,800 mg/m ³ peak)	>98% first stage, >99.9% overall	Media filter (two-stage)
Artificial Glass Production (3)	Monomer methyl methacrylate (MMA), Dichloromethane (DCM)	125–150 m ³ /h, 50–250 mg/m ³	Biofilter: 100% MMA, 20% DCM; BTF: 95% DCM	Media filter plus biotrickling filter (BTF) in series
Hydrocarbon Emissions Control (1)	Hydrocarbon solvents	140,000 m ³ /h, 500 mg/m ³	95%	Media filter
Compost Plant for Garbage (4)	Odor	16,000 m ³ /h, 284 m ² (1 m deep) 60 m ³ /m ² -h, 230 mg C/m ³	>05%	Media filter
Gasoline VOCs Emissions Control (Pilot Scale) (5)	Total VOCs	16 g/ft ³ -h	90%	Media filter
Hydrogen Sulfide Emissions Control (Laboratory Scale) (6)	H ₂ S	1.9-8.6 mg/kg-min (25-2,651 ppmv)	93%-100%	Media filter
Styrene Removal (Bench Scale) (7)	Styrene	Up to 22 g/m ³ -h, 0.5 min retention time	>99%	Biotrickling filter
Styrene Removal (Bench Scale) (7)	Styrene	Up to 100 g/m ³ -h	>95%	Media filter (peat)
Rendering Plant (8)	Odor	1,100 m ³ /h (650 cfm), 420 m ² (4,500 ft ²)	99.9%	Media filter
Fuel-Derived VOC Emissions Control (9)	Nonmethane organic carbon (simulated jet fuel)	500 ppm-cfm/ft², 500-1,500 ppm-cfm/ft²	>95% 30%70%	Media filter

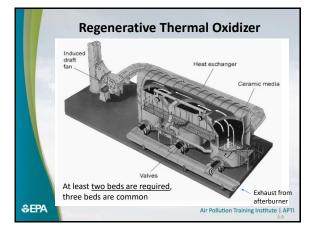
ι	JS EPA Publication on Bioreactors
	USING BIOREACTORS TO CONTROL AIR POLLUTION
	Prepared by The Clean Air Technology Center (CATC)
	U.S. Environmental Protection Agency (E143-03)
	Research Triangle Park, North Carolina 27711
	U.S. Environmental Protection Agency
	Office of Air Quality Planning and Standards
	Information Transfer and Program Integration Division
	Information Transfer Group (E143-03)
	Research Triangle
	EPA-456/R-03-003
	September 2003
\$€PA	Air Pollution Training Institute APTI 5 - 158

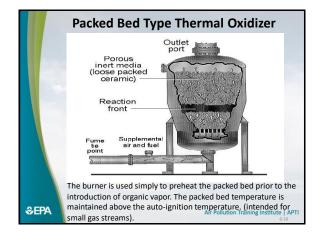


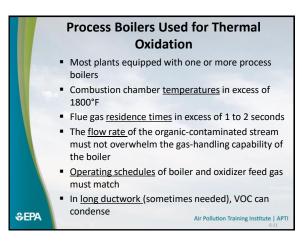

Recuperative and Regenerative

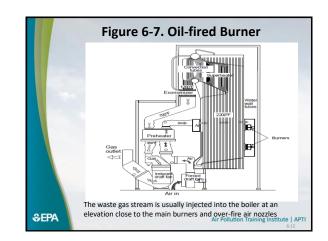

- Terms referring to the type of heat exchanger used in the oxidation system.
- Recuperative: Heat is transferred through a <u>metal surface</u> in a tubular or plate heat exchanger.
- Regenerative: Heat is transferred using two or more <u>ceramic packed beds</u> that alternately store and release heat.


Air Pollution Training Institute | APT


€PA







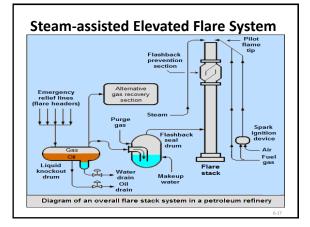
Flares

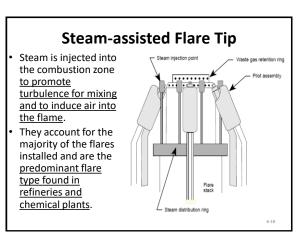
- Flares are often used at <u>chemical plants and petroleum</u> <u>refineries</u> to control VOC vents
- Flares are <u>used for</u>:
 - Routine service
 Low volumes of gas from routine operations
 - Short usually < 100 ft
 - Operate continuously
 - Non-routine: emergency, maintenance, or upsets
 - Handle large volumes of gas
 - Tall usually > 100 ft.
 - Operate intermittently

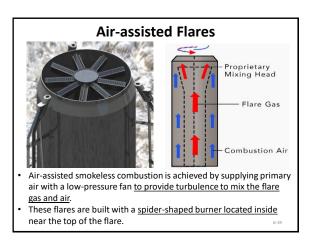
Flares Used for Thermal Oxidation

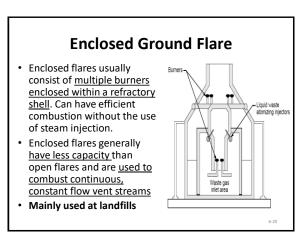
- Have destruction <u>efficiencies</u> exceeding 98%
- Feed composition may exceed UEL
- Can be elevated or at ground level
- Flares can be <u>used to control almost any</u> <u>VOC stream</u>, and can handle fluctuations in
 - -VOC concentration,
 - -flow rate, &
 - -heating value.

€EPA

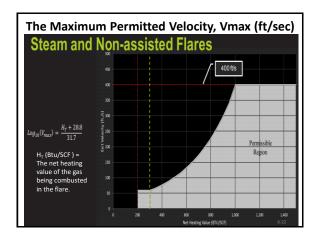

Air Pollution Training Institute | APT

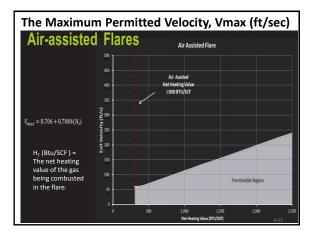

Flare Types

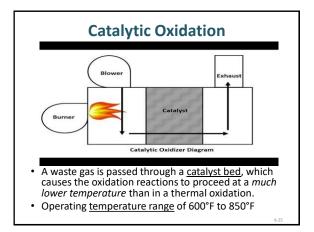

- Flares are generally categorized in two ways:
 - (1) by the <u>method of enhancing mixing</u> at the flare tip (i.e., *steam-assisted, air assisted,* pressureassisted, or non-assisted), &
 - (2) by the <u>height</u> of the flare tip (ground or elevated),
 - <u>Elevating the flare</u> can prevent potentially dangerous conditions at ground level where the open flame is located near a process unit. Further, the products of combustion can be dispersed above working areas to reduce the effects of noise, heat, smoke, and Objectionable odors.

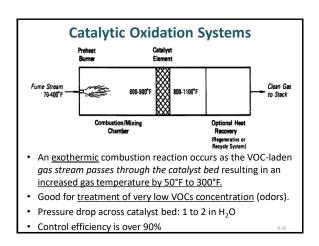

Smokeless Flares

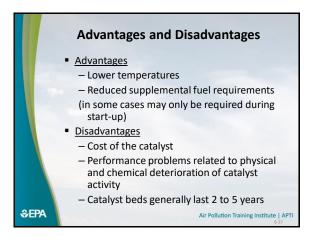
- If a waste gas pressure (momentum) is inadequate & causes smoke, then <u>steam or air</u> <u>are used to make it smokeless.</u>
- Steam assist is more effective for smokeless burns than forced-air. This is because highpressure steam provides more momentum which enhances ambient air entrapment and air-fuel mixing (turbulence).
- <u>Air-assisted flare</u> is good when steam is not available or freezing is an issue.

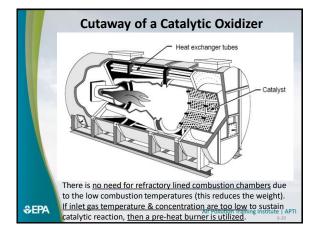


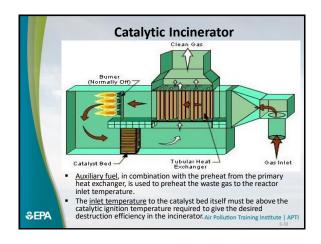



Federal Flare Regulations: NSPS 40 CFR § 60.18

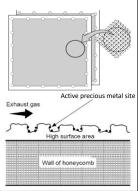

- <u>Pilot flame</u>: requires the presence of a continuous flame.
- Max Tip Exit Velocity: formula shown in next slides.
- At too high an exit velocity, the flame can lift off the tip and flame out, while at too low a velocity, it can burn back into the tip or down the sides of the stack.
- <u>Min Net Heating Value</u> of the gas being combusted is 300 BTU/SCF for steam & air assisted. (200 BTU/SCF if the flare is non-assisted.)
- <u>No visible emissions</u> A five-minute exception period is allowed during any two consecutive hours.
- <u>Leak detection monitoring</u> and record keeping requirements.
- Similar (& more extensive) requirements for **Petroleum Refineries** flares codified at NESHAP 40 CFR § 63.670.

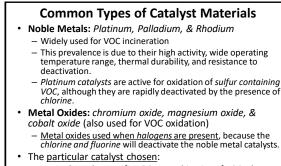


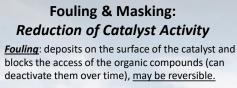




Stationary Sources that Use Catalytic Incineration

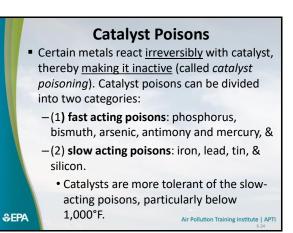

- Surface coating and printing operations widely use catalytic incineration, the others are:
- Varnish cookers;
- Foundry core ovens;
- Filter paper processing ovens;
- Plywood veneer dryers;
- Gasoline bulk loading stations;
- Process vents in the synthetic organic chemical manufacturing industry (SOCMI);
- Rubber products and polymer manufacturing; and
- Polyethylene, polystyrene, and polyester resin manufacturing.

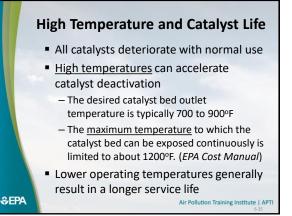



Catalyst Bed Honeycombs

- The catalyst bed (or matrix) is generally a metal-mesh mat, ceramic honeycomb, or other ceramic matrix structure <u>designed to maximize</u> <u>catalyst surface area.</u>
- The support material is arranged in a matrix shape to provide high surface area, low pressure drop (0.05 to 0.5 in H₂O/inch of bed depth), and uniform flow of the waste gas through the catalyst bed.
- The <u>catalyst material is</u> <u>deposited on a carrier</u> which, in turn, is supported on the rigid honeycomb.

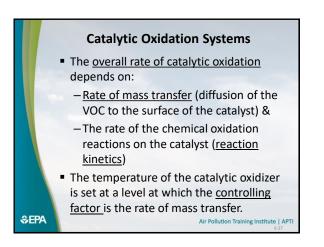
- Depends on the specific VOC or combination of VOCs that are to be treated
- Must be selective to the desired oxidation reaction and resistant to deactivation by the VOC and by other materials present in the gas stream.

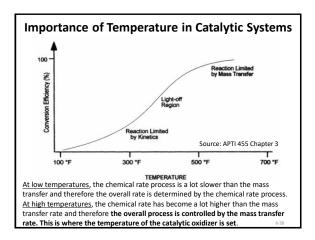

Particulate matter

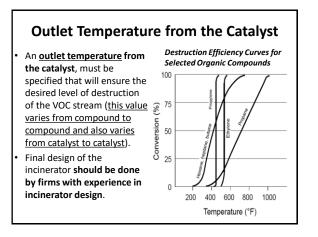

€EPA

Oil droplets (unless they are vaporized in the preheat section

• <u>Masking</u>: materials that have a high adsorptive affinity for some catalytic surfaces, reducing the active sites available to the organic compounds (reversible).

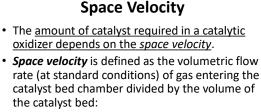

- Sulfur & halogens compounds





Typical Ranges for Catalyst Service Life

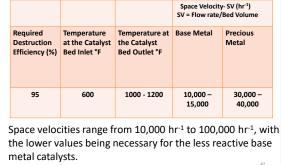
Industry	Typical Compounds Treated	Number of Years Before Catalyst Replacement
Can Coating	MIBK, Mineral Spirits, Isophorone, DIBK, Butyl Cellosolve	7 to 14
Metal Coatings	MEK, MIBK, Toluene, i-Butanol	7 to 10
Automotive Paint Bake	MEK, Toluene, Xylene, Isopropyl alcohol	5 to 14
Glove Manufacturing	Formaldehyde, Phenolics	5
Phthalic Anhydride	PA, MA, S	16
Synthetic Fabrics	Scotchguard, Thermosol Dye	5

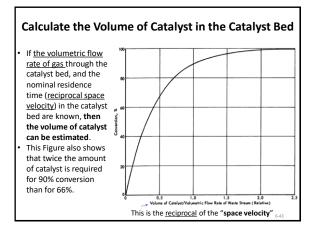


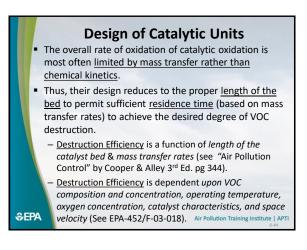
The Inlet Temperature to the Catalyst Bed

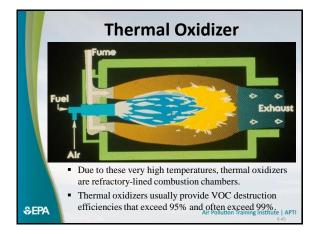
Catalyst <u>Ignition Temperatures</u> Required for Oxidizing 80% of Inlet VOC to CO2, for 2 Catalysts

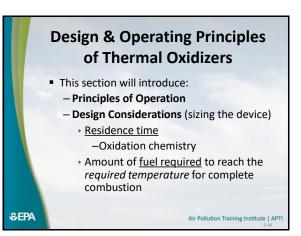
	Ten	nperature, °F
Compound	CO3O4	Pt - Honeycomt
acrolein	382	294
n-butanol	413	440
n-propylamine	460	489
toluene	476	373
n-butyric acid	517	451
1, 1, 1-trichloroethane	661	>661
dimethyl sulfide	-	512

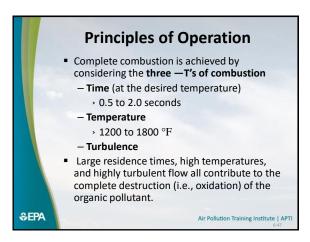

temperature required to give the desired destruction efficiency in the incinerator. <u>It is impossible to predict the temperature needed</u> to obtain a given level of conversion of a VOC mixture. For example, the above table shows that the temperature required for this level of conversion of different VOCs on a given catalyst and of the same VOC on different catalysts can vary significantly.

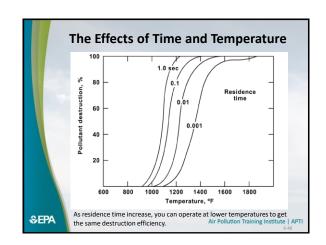


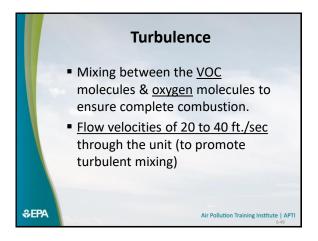

-Space velocity (hr⁻¹) = Flow rate/Bed Volume


• The greater the reactivity of the catalyst, the higher the space velocity and the lower the volume of catalyst required for VOC destruction.


Space Velocity & Destruction Efficiency for Catalytic Incinerator System







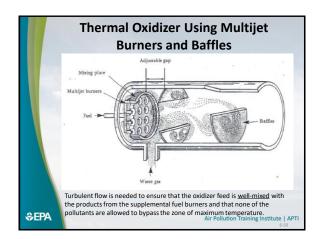




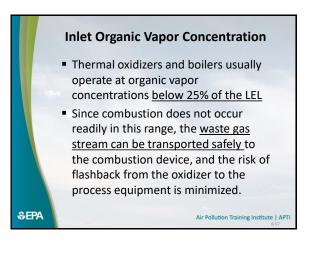
Table 2.1: Theoretical Reactor Temperatures Required for 99.99 Percent Destruction by Thermal Incineration for a 1-Second Residence Time [1]

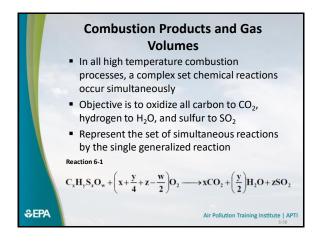
Compound	Temperature, °F
acrylonitrile	1,344
allyl chloride	1,276
benzene	1,350
chlorobenzene	1,407
1,2-dichloroethane	1,368
methyl chloride	1,596
toluene	1,341
vinyl chloride	1,369

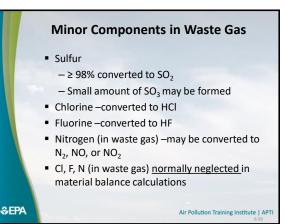
Destruction Efficiency The means for estimating the organic compound

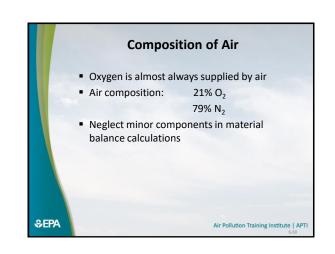
- destruction efficiency of thermal oxidation systems is a function of retention time, operating temperature, flame contact (turbulence), velocity.
- There is no quantitative mathematical relationship that relates efficiency to these variables because the kinetics of combustion flow are complex & kinetic data is scarce & costly to obtain from pilot plant studies.
- But, methods for the prediction of kinetic data has been proposed by several authors. They have produced models to predict the temperature required to give various levels of destruction efficiency. (see Cooper & Alley 3rd Ed. page 328-334) SEPA

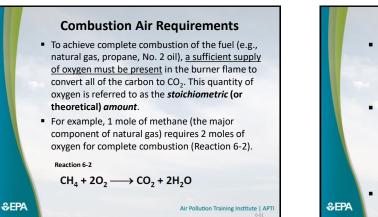
Air Pollution Training Institute | APTI

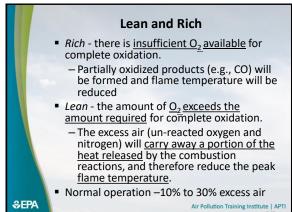

Destruction Efficiency

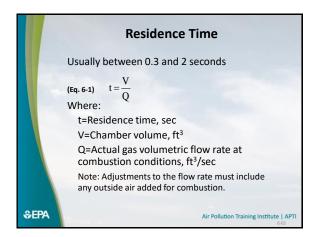

- **Desired control efficiency**—This efficiency should be based on requirements dictated by relevant state and federal regulations.
- VOC destruction rates are difficult to quantify from a purely theoretical standpoint. No parameter has a greater impact on VOC destruction than the operating temperature of the thermal oxidizer.
- Selection of thermal oxidizer operating parameters to achieve optimum VOC destruction is \underline{best} left to companies that have accumulated years of operating data at a variety of conditions.
- Another generally accepted method of determining the temperature required for destruction of an organic compound is its Auto-Ignition Temperature.

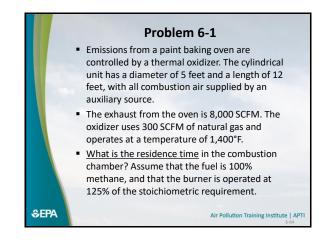

Auto Ignition Temperatures							
Table 6-1. Auto-ignit	ion temperatures.	Destruction	Degrees Above	Residence			
Compound	Auto-Ignition Temperature (°F)	Efficiency %	Auto-ignition Temp ^o F	Time (sec)			
Acetonitrile	870 970	95	300	0.5			
Isopropyl Alcohol (IPA)	780	98	400	0.5			
Methanol Methyl Ethyl Ketone	878 759	99	475	0.75			
(MEK) Toluene	896	99.9	550	1.0			
Xylene	890	99.99	660	2.0			

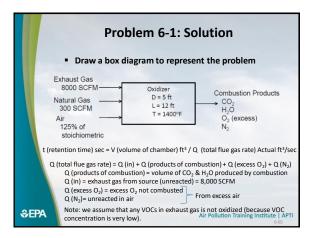

- The auto ignition temperature is the minimum temperature at which a gas will combust in the presence of oxygen in the absence of a spark or flame.
- Most oxidizers operate at temperatures 200°F to 300°F above the auto-ignition temperature <u>of the most difficult to oxidize</u> <u>compound.</u>

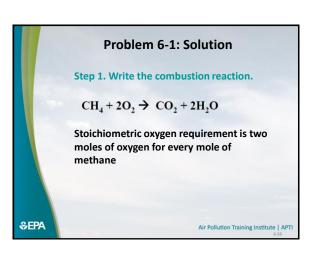


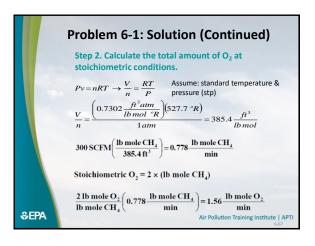




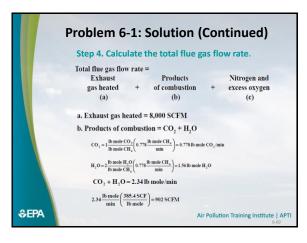


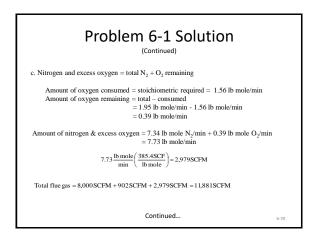


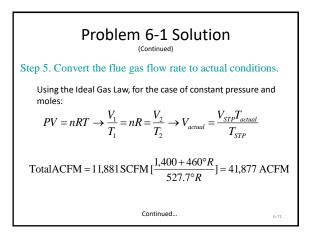


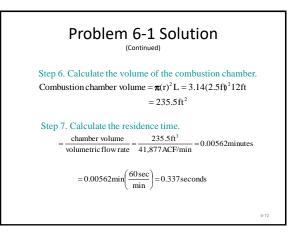


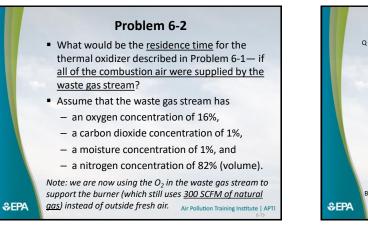


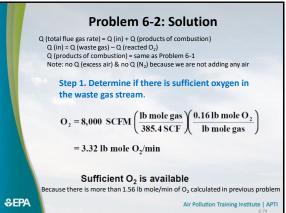


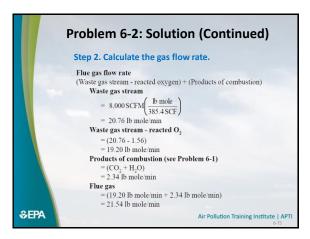


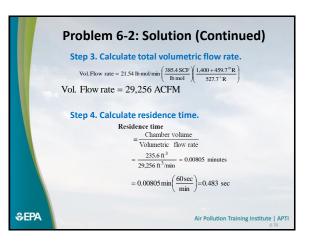


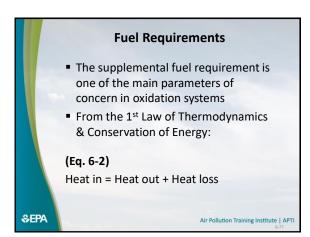


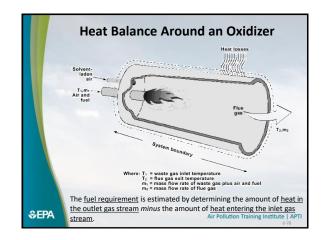


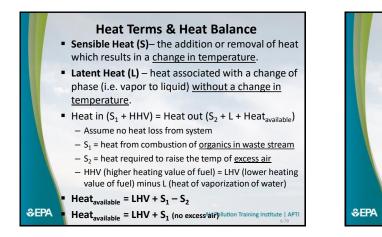










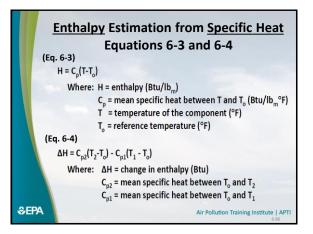


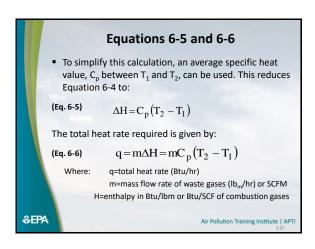
Available Heat and Enthalpy

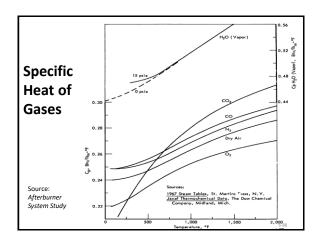
- Available Heat –that portion of the energy liberated by oxidation that is available to heat the waste gas to the outlet temperature.
- Enthalpy –a thermodynamic term that establishes the *energy content of a compound* or stream relative to reference conditions (for our purposes: H = 0 at T_{ref}= 60°F)

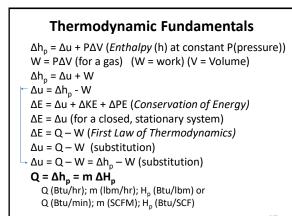
Enthalpy (H) = U + PV

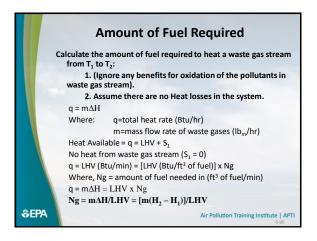
 Available heat will be read from a <u>graph</u> while enthalpy will be obtained from tables or estimated from specific heat data.

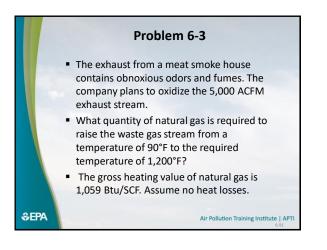

Available Heat of Common Fuels 120,00 100,00 0// 365" API, 1 4 a a b 80,000 60,00 40.00 300 240 180 2551 eat 120 60 2100 Flue gas temperature, °F €PA ite | APTI

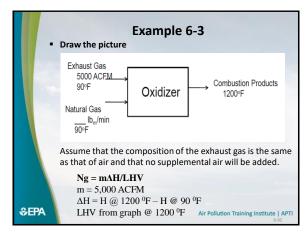

	Table 6-2		thalpie ses, Bt		ombus	tion
	Gas Temp (°F)	02	N ₂	CO ₂	H ₂ O	Air
	60	0.00	0.00	0.00	0.00	0.00
	100	0.74	0.74	0.39	0.36	0.74
	200	2.61	2.58	0.94	0.85	2.58
	300	4.50	4.42	3.39	2.98	4.42
	400	6.43	6.27	5.98	5.14	6.29
	500	8.40	8.14	8.69	7.33	8.17
	600	10.40	10.01	14.44	11.81	10.07
	700	12.43	11.93	17.45	14.11	12.00
	800	14.49	13.85	20.54	16.45	13.95
\$EPA	Service Sec.			Air Pol	lution Training	Institute APTI 6-82

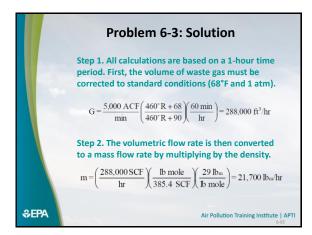

	Table 6- Gas		•		Combus inued)	stion
	Gas Temp (°F)	02	N ₂	CO ₂	H ₂ O	Air
	900	16.59	15.80	23.70	18.84	15.92
	1000	18.71	17.77	26.92	21.27	17.92
	1100	20.85	19.78	30.21	23.74	19.94
	1200	23.02	21.79	33.55	26.26	21.98
	1300	25.20	23.84	36.93	28.82	24.05
	1400	27.40	25.90	40.36	31.42	26.13
	1500	29.62	27.98	43.85	34.08	28.24
	2000	40.90	38.65	61.71	47.91	38.99
	2500	52.43	49.67	80.15	62.60	50.07
\$¢epa	North Contraction			Air Po	ollution Training	g Institute APTI 6-83

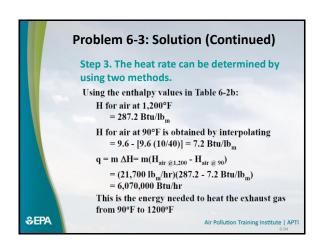

	Ga	ases, B	tu/lb _m		
Gas Temp (°F)	02	N ₂	CO ₂	H ₂ O	Air
60	0.0	0.0	0.0	0.0	0.0
100	8.8	6.4	5.8	17.8	9.6
200	30.9	34.8	29.3	62.7	33.6
300	53.4	59.8	51.3	108.2	57.8
400	76.2	84.9	74.9	154.3	82.1
500	99.5	110.1	99.1	201.0	106.7
600	123.2	135.6	124.5	248.7	131.6
700	147.2	161.4	150.2	297.1	156.7
800	171.7	187.4	176.8	346.4	182.2

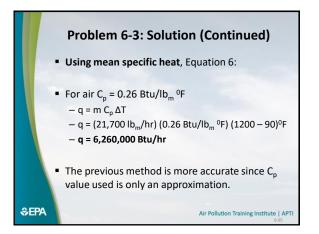

	Table 6 Ga		•	es of C (Conti		tion
	Gas Temp (°F)	0 ₂	N ₂	CO ₂	H ₂ O	Air
	900	196.5	213.8	204.1	396.7	211.4
	1000	221.6	240.5	231.9	447.7	234.1
	1100	247.0	267.5	260.2	499.7	260.5
	1200	272.7	294.9	289.0	552.9	287.2
	1300	298.5	326.1	318.0	606.8	314.2
	1400	324.6	350.5	347.6	661.3	341.5
	1500	350.8	378.7	377.6	717.6	369.0
	2000	484.5	523.0	531.4	1003.1	509.5
	2500	621.0	672.3	690.2	1318.1	654.3
≎epa				Air Po	llution Training	Institute APTI 6-85

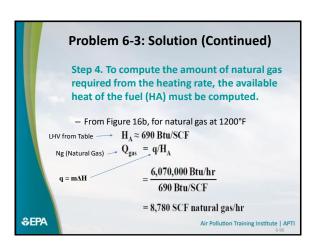


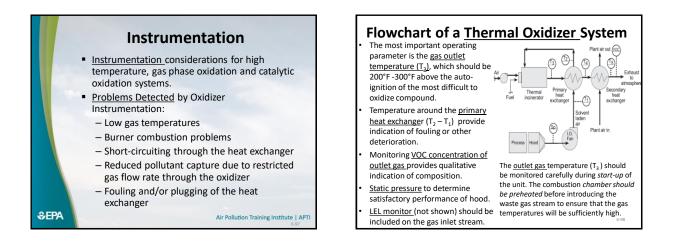


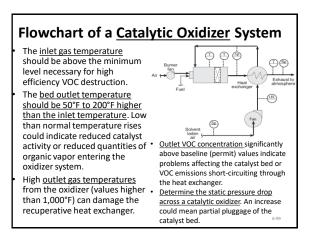


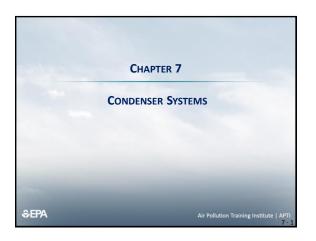


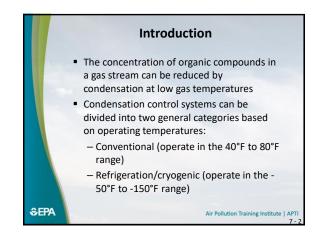


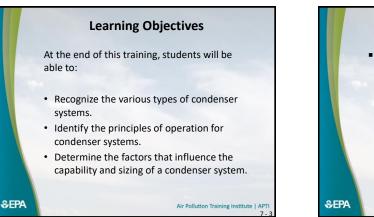


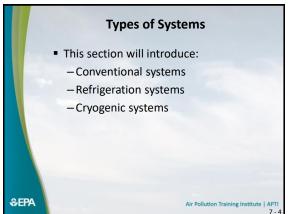


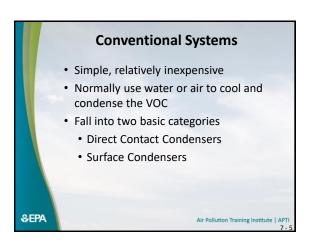


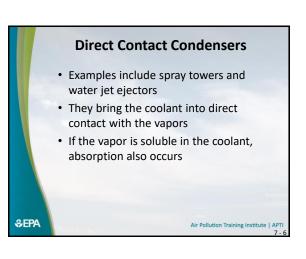


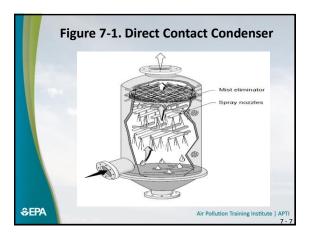


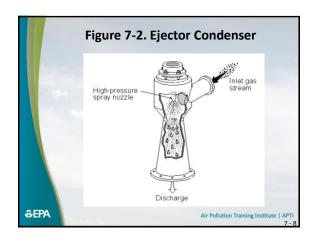


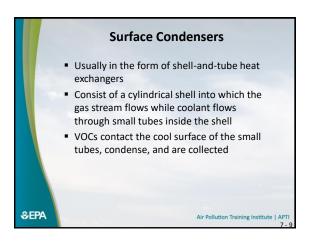


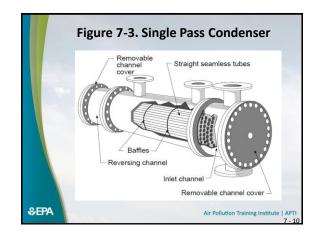


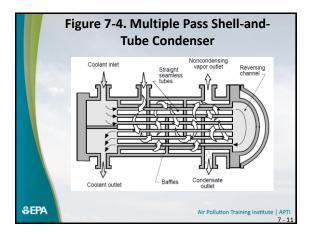


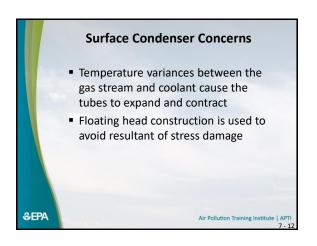


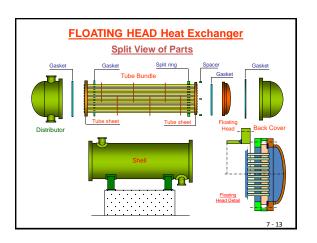


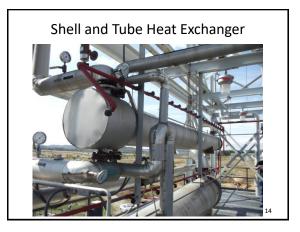


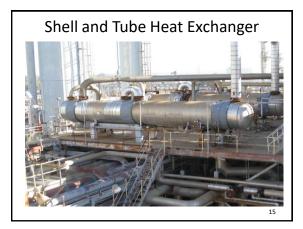


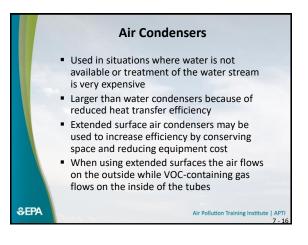


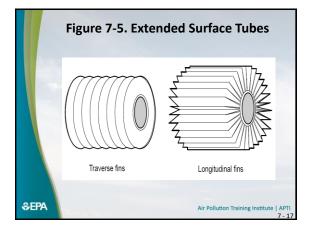


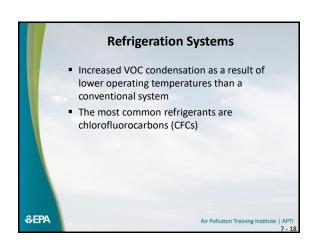


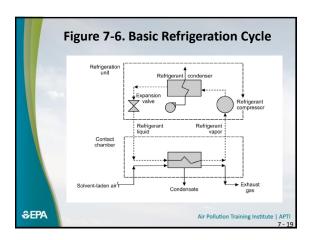


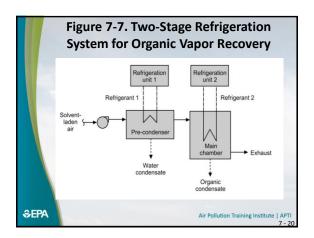


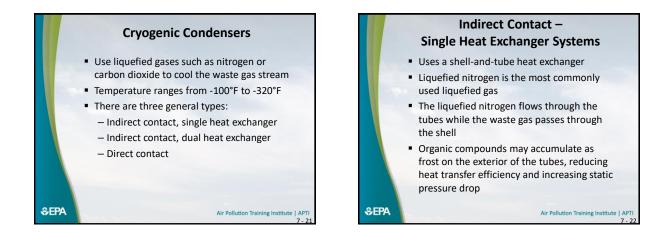


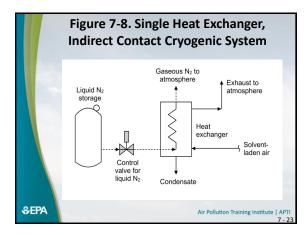


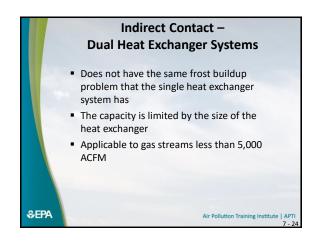


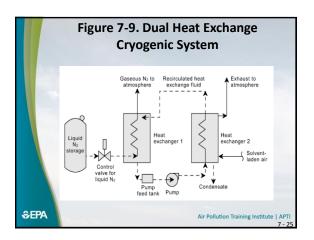


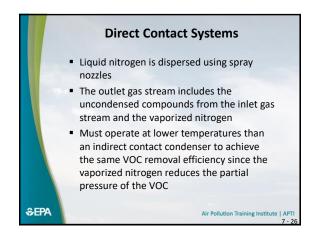


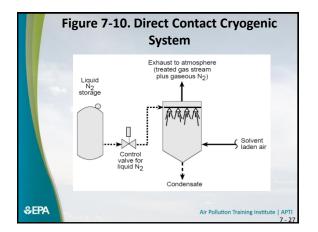


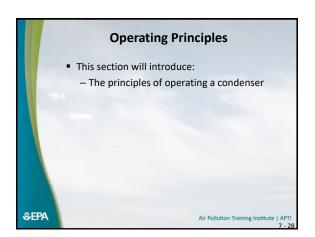


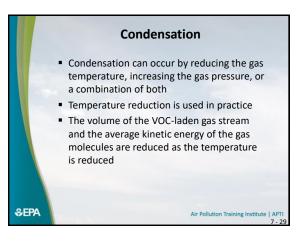


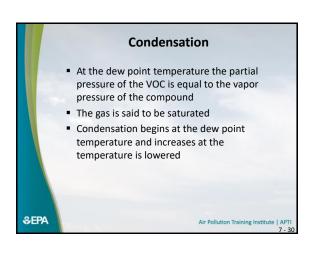


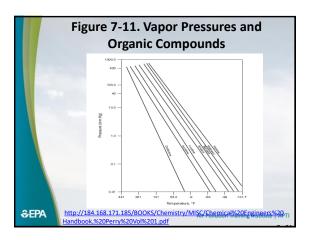


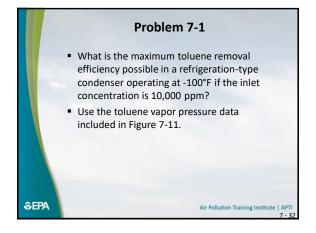


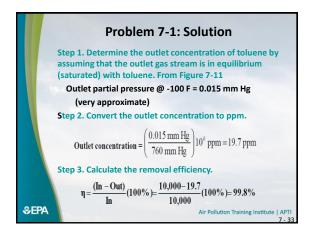


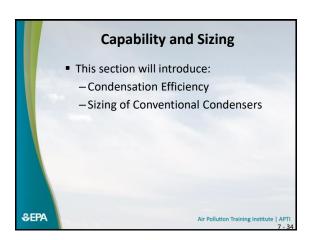


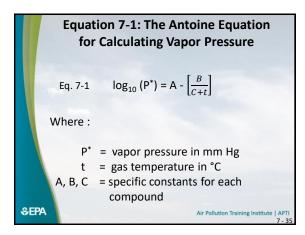


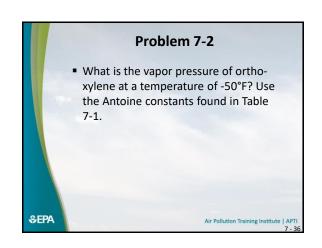












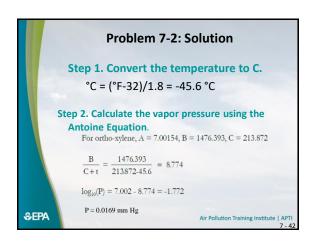
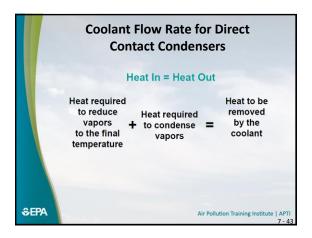
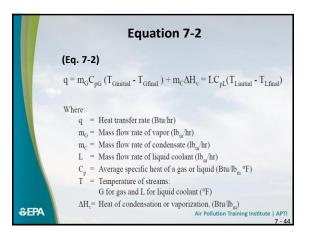
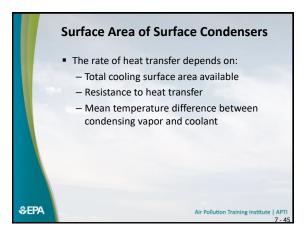
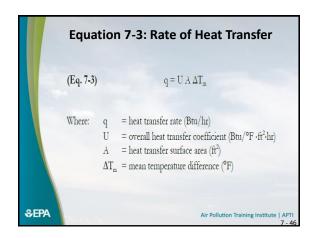

		Table 7-1	. Antoine	Constants	
	Compound	Range (°C)	А	в	с
1000	Acetaldehyde	-0.2 to 34.4	8.00552	1600.017	291.809
1	Acetic acid	29.8 to 126.5	7.38782	1533.313	222.309
1000	Acetone	-12.9 to 55.3	7.11714	1210.595	229.664
	Ammonia	-83 to 60	7.55466	1002.711	247.885
	Benzene	14.5 to 80.9	6.89272	1203.531	219.888
	n-Butane	-78.0 to -0.3	6.82485	943.453	239.711
	i-Butane	-85.1 to -11.6	6.78866	899.617	241.942
	1-Butene	-77.5 to -3.7	6.53101	810.261	228.066
	Butyric acid	20.0 to 150.0	8.71019	2433.014	255.189
	Carbon tetrachloride	14.1 to 76.0	6.87926	1212.021	226.409
	Chlorobenzene	62.0 to 131.7	6.97808	1431.063	217.55
	Chlorobenzene	0 to 42	7.106	1500.000	224.000

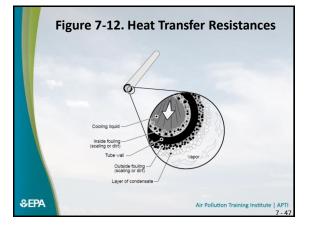
		Table 7-1	. Antoine C	Constants	
	Compound	Range (°C)	А	в	с
	Chloroform	-10.4 to 60.3	6.95465	1170.966	226.232
	Cyclohexane	19.9 to 81.6	6.84941	1206.001	223.148
	n-Decane	94.5 to 175.1	6.95707	1503.568	194.056
	1,1-Dichloroethane	-38.8 to 17.6	6.97702	1174.022	229.06
	1,2-Dichloroethane	-30.8 to 99.4	7.0253	1271.254	222.927
	Dichloromethane	-40.0 to 40	7.40916	1325.938	252.615
	Diethyl ether	-60.8 to 19.9	6.92032	1064.066	228.799
	Dimethyl ether	-78.2 to -24.9	6.97603	889.264	241.957
	Dimethylamine	-71.8 to 6.9	7.08212	960.242	221.667
	Ethanol	19.6 to 93.4	8.1122	1592.864	226.184
	Ethanolamine	65.4 to 170.9	7.4568	1577.67	173.368
	Ethyl acetate	15.6 to 75.8	7.10179	1244.951	217.881

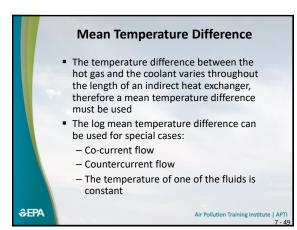

	Table 7-1.	Antoine (Constant	s (Conti	nued)
		Table 7-1. A	Antoine Co	nstants	
	Compound	Range (°C)	A	в	с
	Formaldehyde	-109.4 to -22.3	7.19578	970.595	244.124
	Glycerol	183.3 to 260.4	6.16501	1036.056	28.097
	n-Heptane	25.9 to 99.3	6.90253	1267.828	216.823
	i-Heptane	18.5 to 90.9	6.87689	1238.122	219.783
	1-Heptene	21.6 to 94.5	6.91381	1265.12	220.051
	n-Hexane	13.0 to 68.5	6.88555	1175.817	224.867
	i-Hexane	12.8 to 61.1	6.86839	1151.401	228.477
	1-Hexene	15.9 to 64.3	6.8688	1154.646	226.046
	Hydrogen Cyanide	-16.4 to 46.2	7.52823	1329.49	260.418
	Methanol	14.9 to 83.7	8.08097	1582.271	239.726
	Methyl acetate	1.8 to 55.8	7.06524	1157.63	219.726
	Methyl chloride	-75.0 to 5.0	7.09349	948.582	249.336
\$epa	Photo A.		Air	r Pollution Train	ing Institute APT 7 - 3

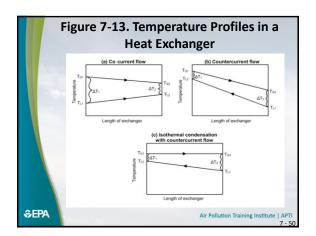

	Table 7-1. Antoine Constants						
	Compound	Range (°C)	А	в	с		
1.000	Nitrobenzene	134.1 to 210.6	7.11562	1746.586	201.783		
	Nitromethane	55.7 to 136.4	7.28166	1446.937	227.6		
	n-Nonane	70.3 to 151.8	6.93764	1430.459	201.808		
	1-Nonane	66.6 to 147.9	6.95777	1437.862	205.814		
	n-Octane	52.9 to 126.6	6.91874	1351.756	209.10		
	i-Octane	41.7 to 118.5	6.88814	1319.529	211.625		
	1-Octene	44.9 to 122.2	6.93637	1355.779	213.022		
	n-Pentane	13.3 to 36.8	6.84471	1060.793	231.541		
	i-Pentane	16.3 to 28.6	6.73457	992.019	229.564		
	1-Pentanol	74.7 to 156.0	7.18246	1287.625	161.33		
	1-Pentene	12.8 to 30.7	6.84268	1043.206	233.344		
	1-Propanol	60.2 to 104.6	7.74416	1437.686	198.463		

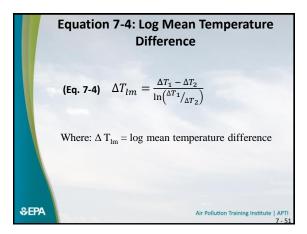

	Table 7-1. Ar	ntoine Co	nstants	(Contin	ued)
	Ta	ble 7-1. Ant	oine Cons	tants	
	Compound	Range (°C)	A	в	с
	Propionic acid	72.4 to 128.3	7.71423	1733.418	217.724
	Propylene oxide	-24.2 to 34.8	7.01443	1086.369	228.594
	Styrene	29.9 to 144.8	7.06623	1507.434	214.985
	Toluene	35.3 to 111.5	6.95805	1346.773	219.693
	1,1,1-Trichloroethane	-5.4 to 16.9	8.64344	2136.621	302.769
	1,1,2-Trichloroethane	50 to 113.7	6.95185	1314.41	209.197
	Trichloroethylene	17.8 to 86.5	6.51827	1018.603	192.731
	Water	0 to 60	8.10765	1750.286	235.000
	m-Xylene	59.2 to 140.0	7.00646	1460.183	214.827
	o-Xylene	63.5 to 145.4	7.00154	1476.393	213.872
	p-Xylene	58.3 to 139.3	6.9882	1451.792	215.111
\$€PA	North No.		Air Po	llution Training	institute APTI 7 - 41

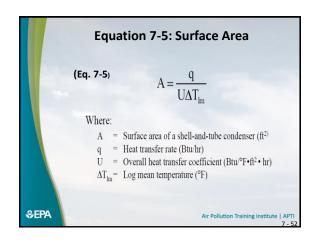


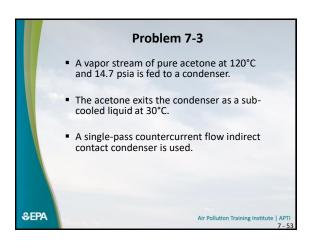

APTI 415 Course Control of Gaseous Emissions

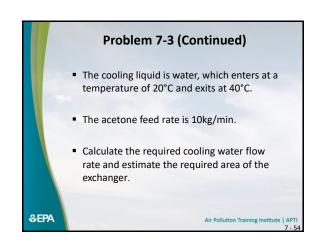


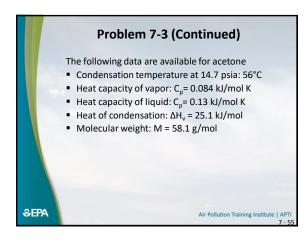


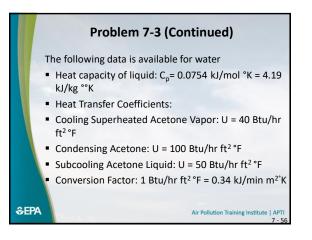


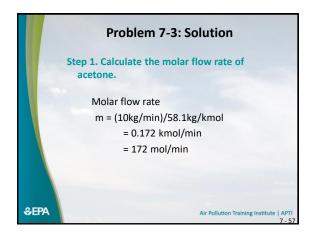


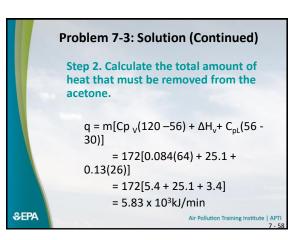

(use only for re	ough estim	ations)
Condensing Material (Shell Side)	Cooling Liquid	U, Btu/°F • ft²·hr
Organic solvent vapor with high percent of noncondensable gases	Water	20 - 60
High boiling hydrocarbon vapor (vacuum)	Water	20 - 50
Low boiling hydrocarbon vapor	Water	80 - 200
Hydrocarbon vapor and steam	Water	80 - 100
Steam	Feedwater	400 - 1000
Water	Water	200 - 250

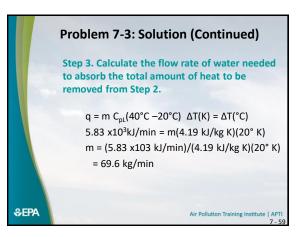


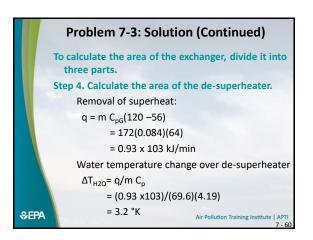


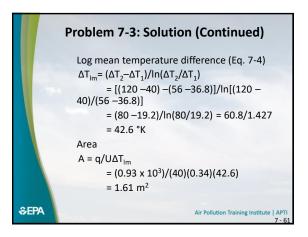


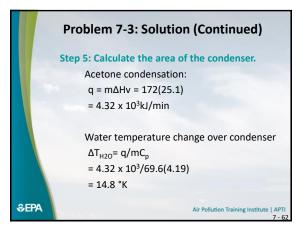


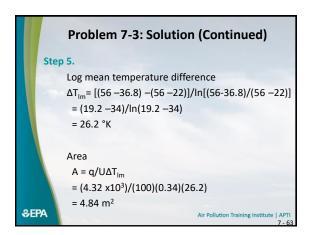


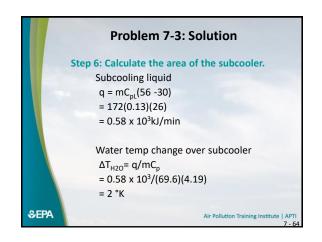

APTI 415 Course Control of Gaseous Emissions

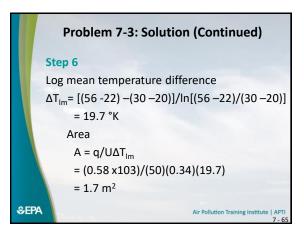


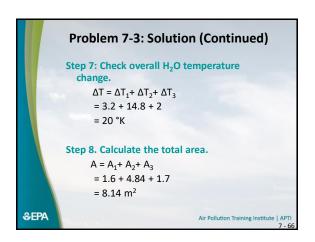


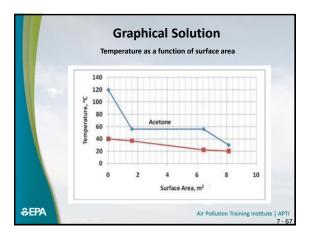


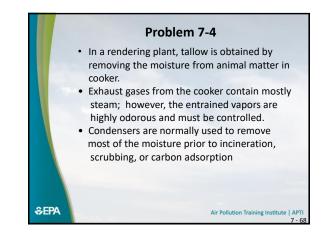


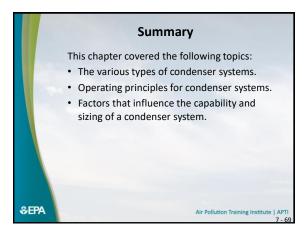


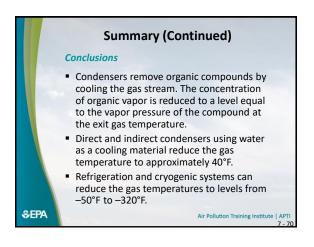


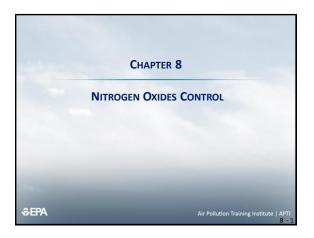


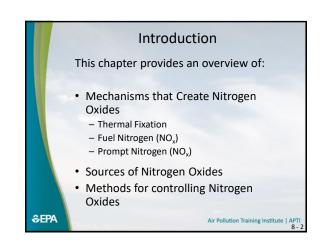


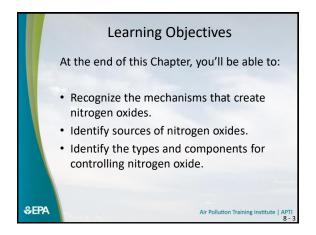


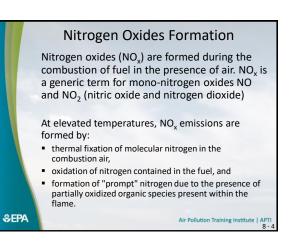


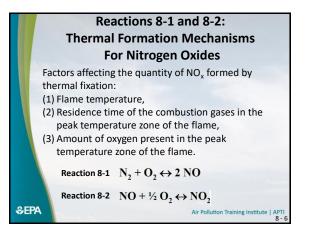


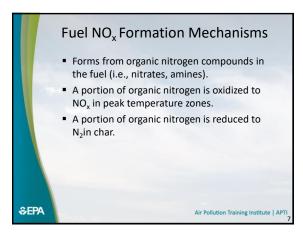


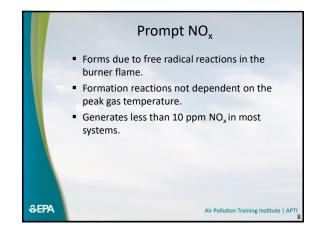


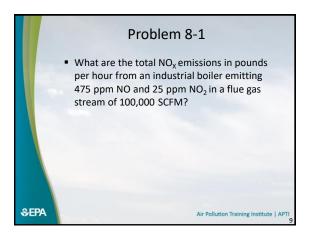


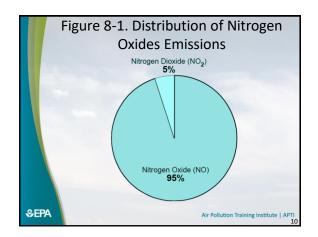


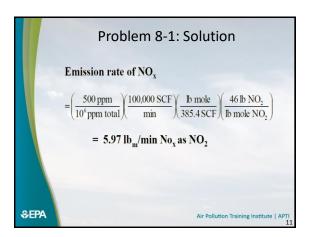


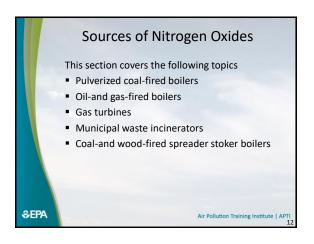


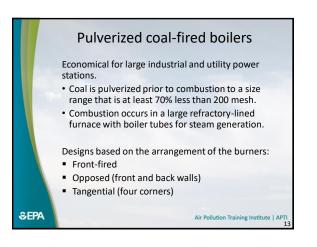


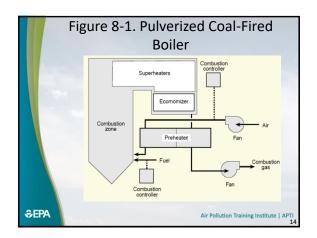


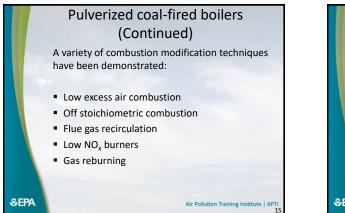

	Family of NOx Compounds and Their						
			Proper	ties			
	Formula	Name	Nitrogen Valence	Properties			
	N2O	Nitrous oxide	1	Colorless gas water soluble			
	NO N2O2	Nitric oxide Dinitrogen dioxide	2	Colorless gas slightly water soluble			
	N2O3	Dinitrogen trioxide	3	Black solid water soluble, decomposes in water			
	NO2 N2O4	Nitrogen dioxide Dinitrogen tetroxide	4	Red-brown gas very water soluble decomposes in water			
\$EPA	N2O5	Dinitrogen pentoxide	5	White solid, very water soluble, decomposes in water ;			



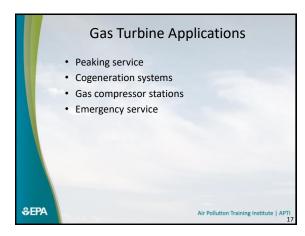


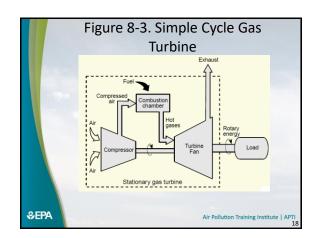


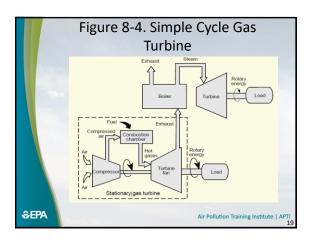


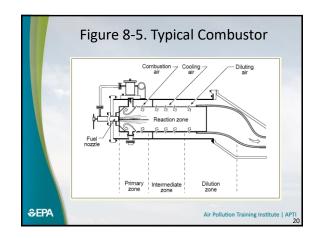


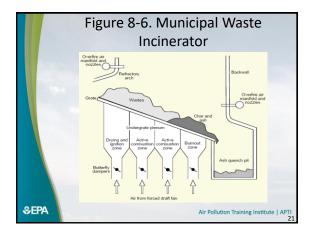


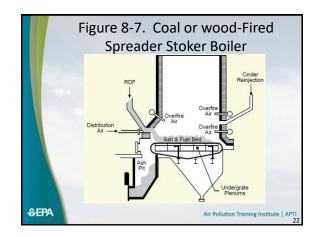


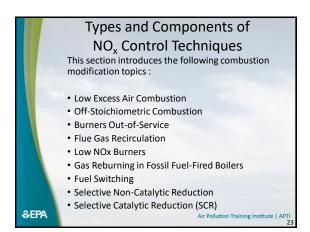


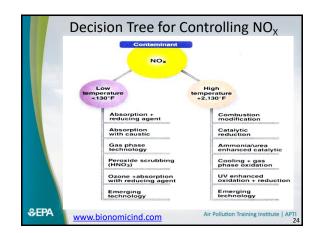


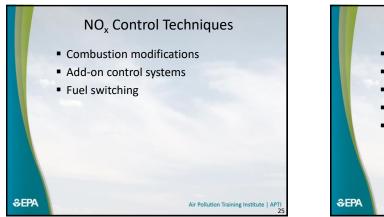


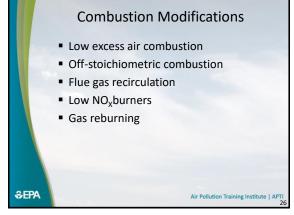


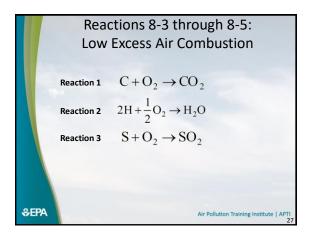


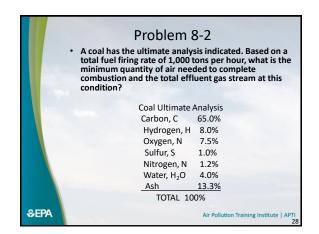


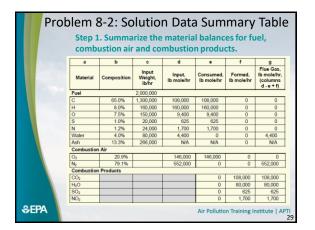


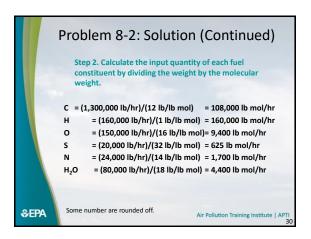


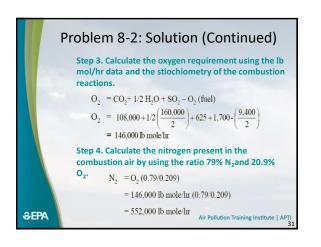


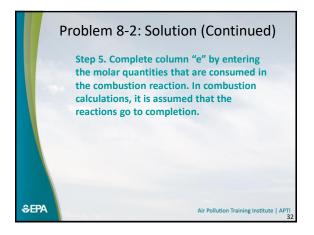


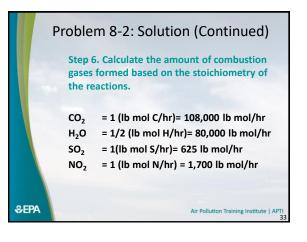


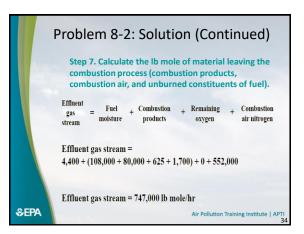


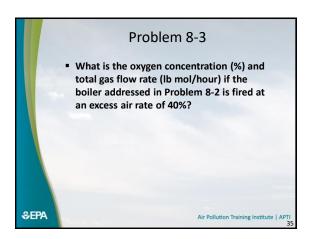


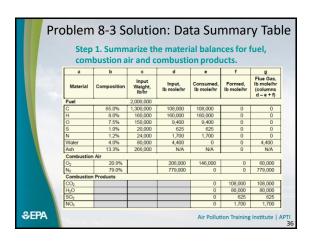


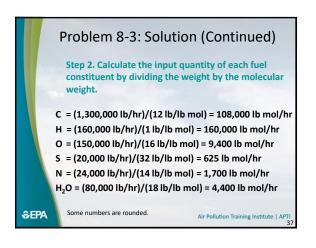


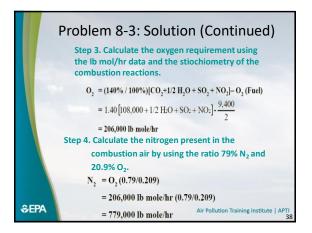


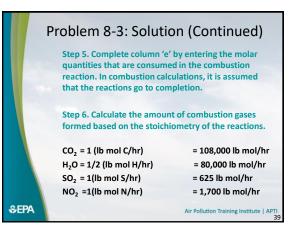


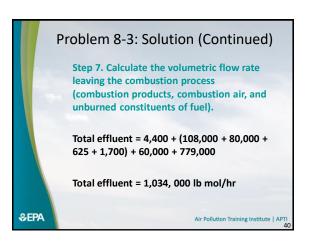


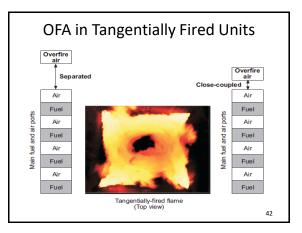


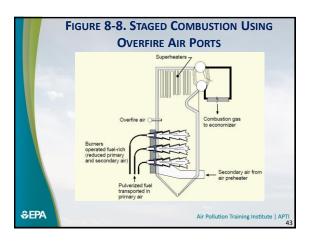











Combustion Overfire Air (OFA)

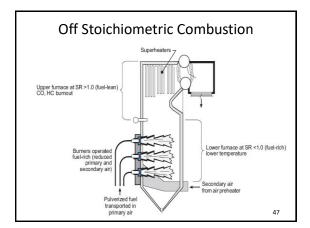
- Staged combustion can be accomplished by using overfire air (OFA) ports. These are separate air injection nozzles located above the burners as indicated in the following figure.
- Burners are operated fuel-rich, and the overfire air ports maintain the remainder of the combustion.
- Approximately 15% to 20% of the combustion air flow is diverted to the over-fire air ports.

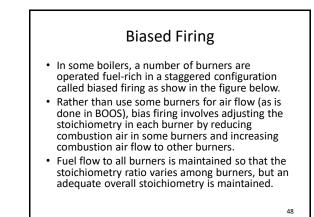
41

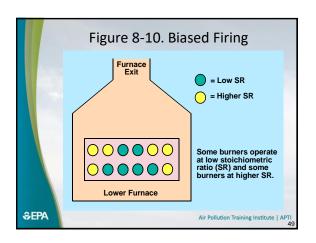
44

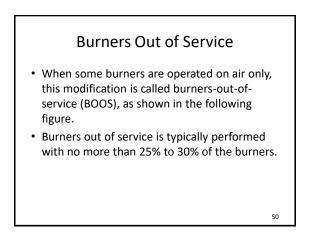
Overfire Air (OFA)

- As with LEA, OFA may increase CO or unburned hydrocarbon emissions.
- Applicable to process heaters by using air lances rather than changing the boiler configuration.
- OFA for small boilers and process heaters can be accomplished by inserting a lance through the upper furnace and injecting air through that lance.
- OFA provides modest NOX reductions in the range of 20%.
- Reduction must be balanced with the cost of additional air handling equipment and the increase in unburned carbon and CO emissions.

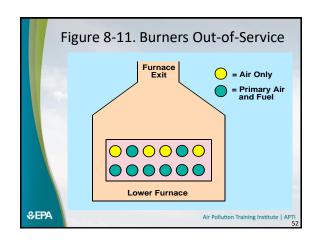

Overfire Air (OFA) cont.


- The following figure demonstrates the operating principles of the OFA method. A secondary air port or OFA injection port has been added above the primary air-fuel burner. Below this port is the fuel-rich zone (stoichiometric ratio less than 1) with peak temperatures lower than those associated with conventional combustion (stoichiometric ratio greater than 1).
- The injection of OFA allows the upper zone of the furnace to achieve a stoichiometric ratio greater than 1 (fuel-lean) and promotes the burnout of CO and hydrocarbons.
- If the secondary air ports are located too far from the burners, the residence time will be inadequate to allow for burnout of the CO and hydrocarbons.


45


Off Stoichiometric Combustion

- The following figure demonstrates the operating principles of the OFA method.
- A secondary air port or OFA injection port has been added above the primary air-fuel burner.
- Below this port is the fuel-rich zone (stoichiometric ratio less than 1) with peak temperatures lower than those associated with conventional combustion (stoichiometric ratio greater than 1).
- The injection of OFA allows the upper zone of the furnace to achieve a stoichiometric ratio greater than 1 (fuel-lean) and promotes the burnout of CO and hydrocarbons.
- If the secondary air ports are located too far from the burners, the residence time will be inadequate to allow for burnout of the CO and hydrocarbons.



Burners Out of Service (cont.)

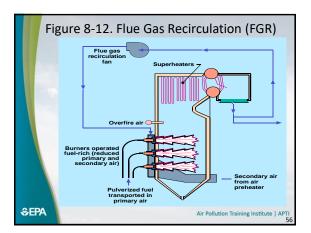
- BOOS is similar to OFA, but does not require the installation of new OFA ports. The approach is to reduce air to several of the lower burners and to eliminate fuel in several upper level burners.
- This arrangement simulates an OFA air system because the reduced air in the lower burners creates a fuel-rich zone and the reduction of fuel in the upper ports creates a fuel-lean zone.
- Using BOOS on an existing boiler can result in a steam load reduction if the active fuel burners do not have the capacity to supply fuel for a full load.
- Therefore, BOOS is typically used on wall-fired units and other units that have the ability to operate at less than full load conditions.

51

Flue Gas Recirculation (FGR)

- Flue gas recirculation (FGR) has been used to reduce thermal NOX emissions from large coal-, oil-, and gas-fired boilers.
- A portion (10% to 30%) of the flue gas exhaust is recycled back into the main combustion chamber by removing it from the effluent gas stream and mixing it with the secondary air entering the windbox that supplies the burners as shown in the following figure.
- The recirculated gas lowers the flame temperature and dilutes the oxygen content of the combustion air, thus lowering NOX emissions. of about 15% are typical with flue gas recirculation.

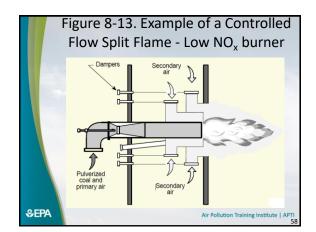
Flue Gas Recirculation (cont.)


- NOX reduction of approximately 40% to 50% is possible with recirculation of 20% to 30% of the exhaust gas in gas- and oil-fired boilers.
- At high rates of recirculation (e.g., 30%), the flame can become unstable, increasing carbon monoxide and partially oxidized organic compound emissions.
- FGR requires greater capital expenditures than low excess air and staged combustion modifications.

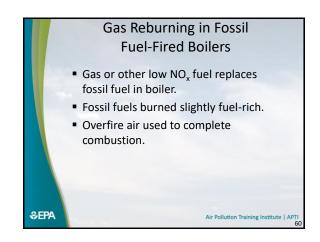
54

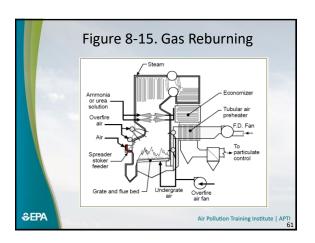
Flue Gas Recirculation (cont.)

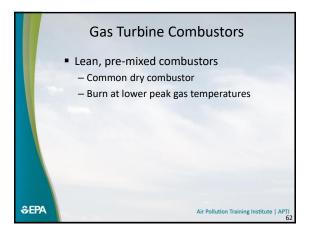
- High temperature fans (forced or induced draft) ducts, and large spaces are required for recirculating the gas.
- FGR can be used with OFA techniques to achieve even greater reductions in NOX emissions.
- FGR can also be conducted internally when used in conjunction with new, advanced burners.
- Internal FGR recirculates the flue gas by means of aerodynamic forces instead of the recirculating flue gas fan that is used with conventional FGR.

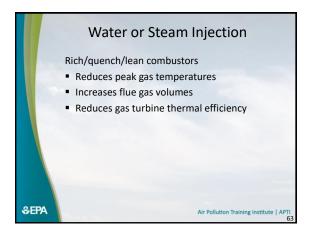

55

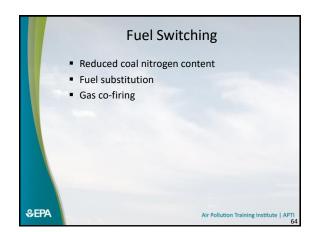


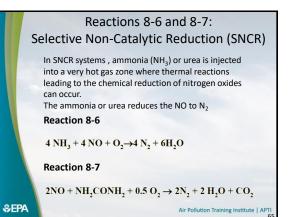

Staged Air Burners

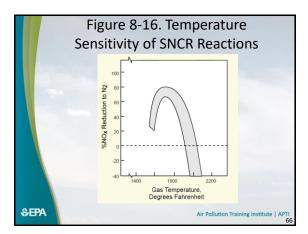

- Staged air is an early LNB design that employs staged air within the burner.
- A general staged air burner design is shown in the following Figure 8- 13.
- This is a wall-fired burner (also called a *dual* register burner) where, in the first stage, fuel and primary air enter through the center tube of the burner.
- There may also be swirl vanes in the primary fuel zone to control fuel flow.
- The fuel-air mixture is injected into the burner to create a fuel-rich axial flame core in the primary combustion zone of the burner.

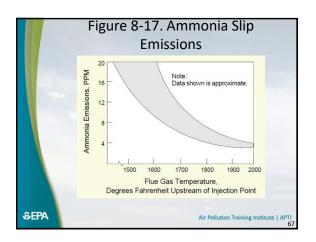

57

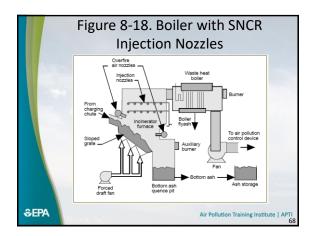


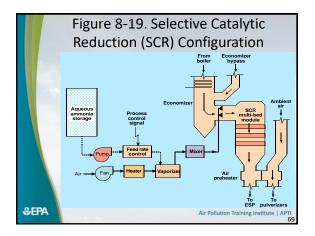


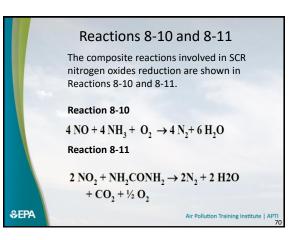


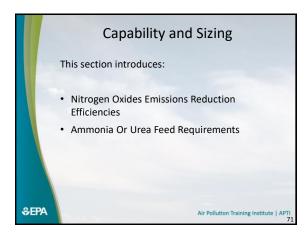


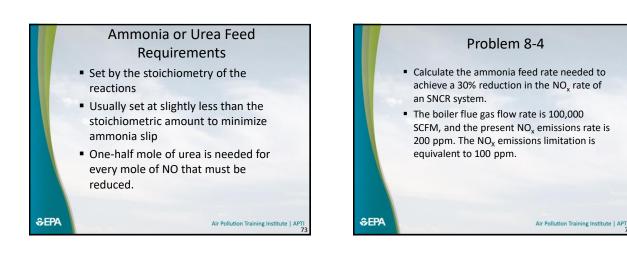


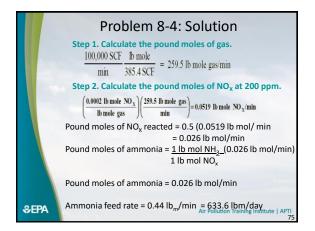


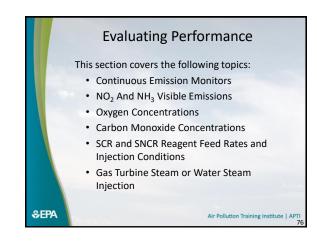


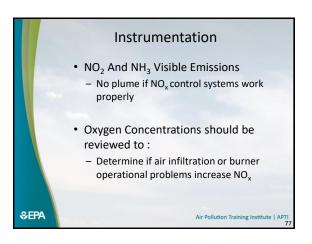


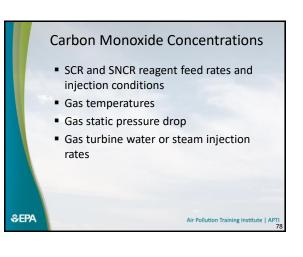


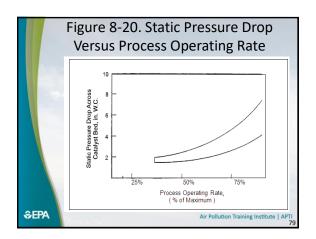


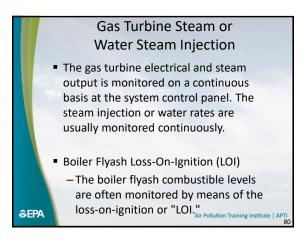



	. General Range ression Efficienc	~ ~
Control Techniqu	e Typical Applications	NO _X Reduction Efficiencies, %
Combustion Modificat	tions	
Low Excess Air	Coal-Fired Boilers, Municipal Waste Incinerators	15-30%
Off-Stoichiometric Comb	ustion Coal-, Oil-, Gas-Fired Boilers	15-50%
Flue Gas Recirculation	Coal-, Oil- Gas-Fired Boilers	15-50%
Low NO _X Burners	Coal-, Oil-, Gas-Fired Boilers	25-40%
Gas Reburning	Coal-, Oil-, Gas-Fired Boilers	30-70%
Lean Combustors	Gas-Fired Turbines	>90%
Water/Steam Injection	Gas-Fired Turbines	60-75%
Flue Gas Treatment		
SNCR	Coal-Fired Boilers, Municipal Waste Incinerators	20-60%
SCR	Coal-Fired Boilers, Gas Turbines	60-90%
Fuel Switching		
Low Nitrogen Coal	Coal-Fired Boilers	No Data
Co-Firing	Coal-Fired Boilers	No Data

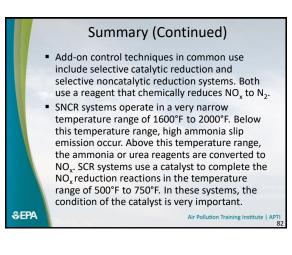

APTI Course 415 Control of Gaseous Emissions

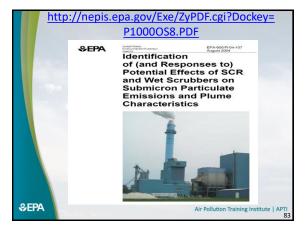

CHAPTER 8 NITROGEN OXIDES CONTROL

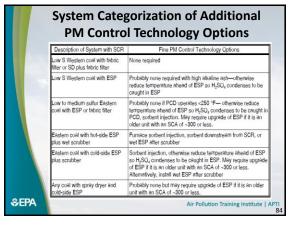


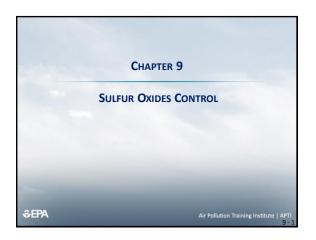


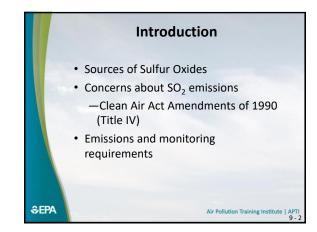


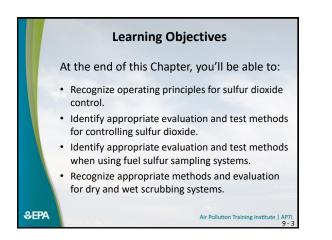


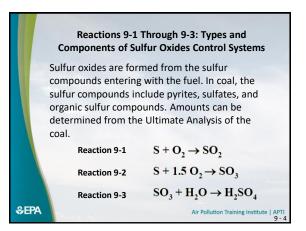


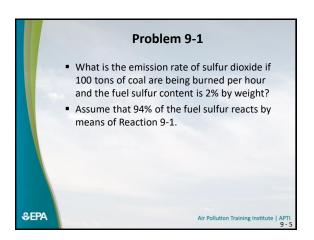


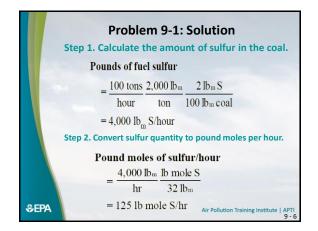


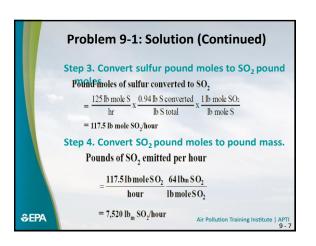


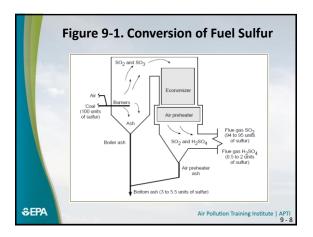


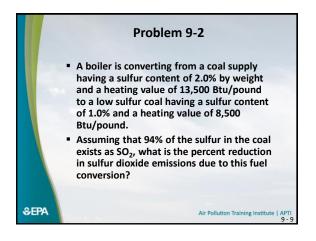


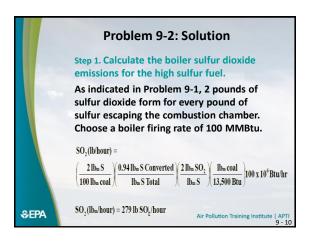


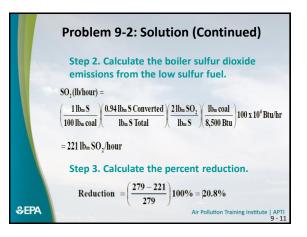


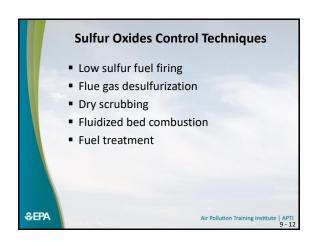


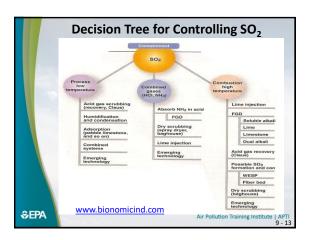


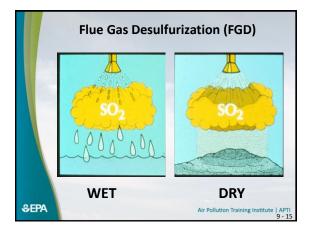


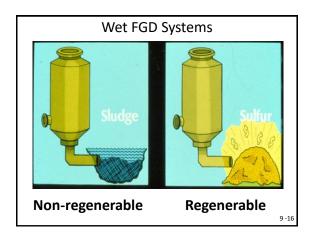


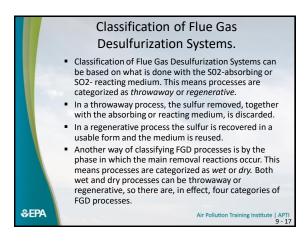




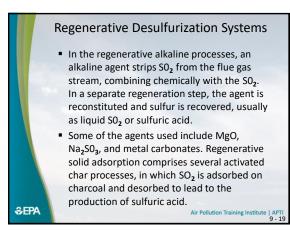


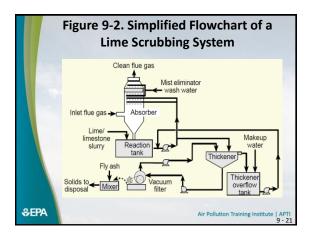


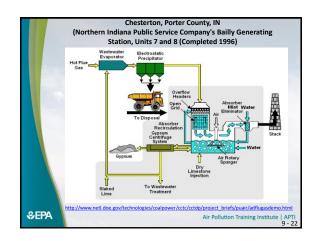


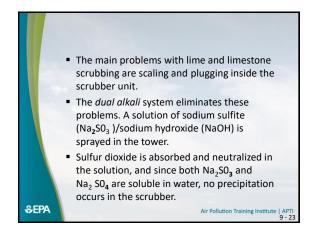


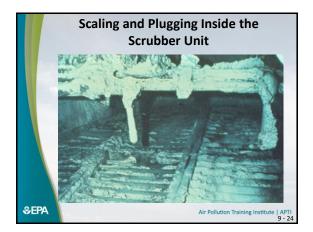
Methods of Control	
Lower Sulfur Fuel	Method – Lower sulfur fuel reduces SO ₂ formation Reagent – None Typical luet types – Powder River Basin coal and lower sulfur bituminous coal Capital Cost – Low Co-beneffs – May reduce NOx, HCI, and HF emissions
Dry Sorbent Injection	Method – Dry Sorbert Ingetion captures SO ₂ at molerate rates, downstream PM control device captures day product Reagent – Trona, sodium bicaritonale, hydraida time Typical Fiui Typical Fiui Typica – Most offen solid fuels (i.e., coate – lignite, sub-bituminous, bituminous) Captarti Cost-buo is moderate Co-benetis – NOx and HC and HF reduction, Hig reduction, removal of chlorine, a procuro to downstrians.
Dry Scrubber with Fabric Filter	Method – Reagent - water react to capture acid gases and dry product captured in downstream fabric file Reagent – Hydrated lime Typical File Types – Coal Capital Coals, Hyse – Coal Ca
Wet Scrubber	Method - Reagent + water react to capture acid gases Reagent - Limestone, lime, causis coda Typical Fuel Types - Coat, potroleum coke, high suffur fuel al Contral costs - High Co-benefits - Highest SQ2 capture, high oxidized Hg and high HCI capture, PM capture
Wet Scrubber Upgrades	Method – Upgrade older scrubbers to provide performance approaching those of new scrubbers Reagent – Limestone, Ime, etc. Typica Fuel Types – Coal petrolesm coke, high suffur fuel oil Capital Costs – Low to moderate Co-benefits – Same as wet scrubber

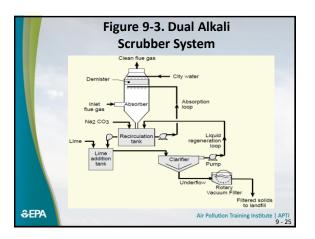


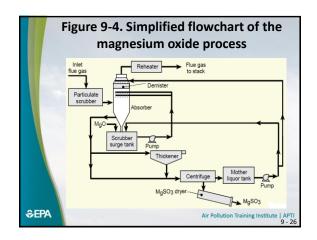

Non-Regenerative Desulfurization Systems

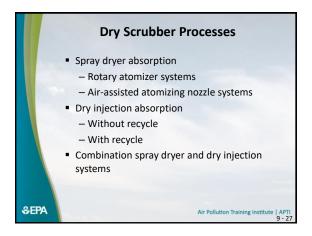

- In the majority of the throwaway processes an alkaline agent reacts with the SO₂ leading to a product that is discarded.
- Commonly used agents in this type of process are limestone (CaCO₃) and lime (CaO).
- In another type of throwaway process the agent is injected directly into the furnace, and the sulfated product is subsequently scrubbed out of the flue gas with water. Part of the SO₂ is captured chemically within the furnace, the rest in the scrubbing step.
 Air Pollution Training Institute 1 APTT 9 18

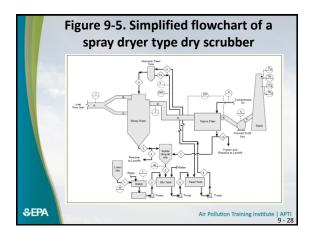

SEPA

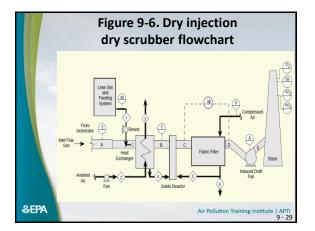


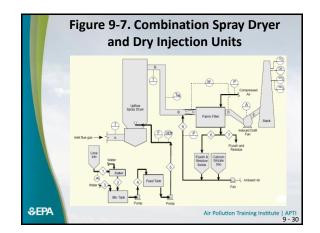

	Table 9-1. Common Processes for Boilers	••				
	Type of SO2 Control System	1989 (%)	2010 (%)			
	Wet Scrubbers, Non-regenerative (Throw-away)					
1000	Lime	23.6	18.4			
	Limestone	50.6	45.5			
	Dual Alkali	3.4	2.3			
	Sodium Carbonate	4.0	3.3			
	Regenerative (Saleable Product)					
	Magnesium Oxide	1.4	1.0			
	Wellman Lord	3.1	2.1			
	Lime/Limestone	4.0	4.7			
	Citrate/Undecided	0.0	0.3/7.8			
\$epa	Desta A	Air Pollution Tr	aining Institute APTI 9 - 20			

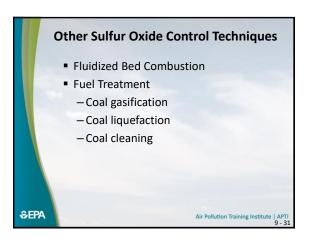


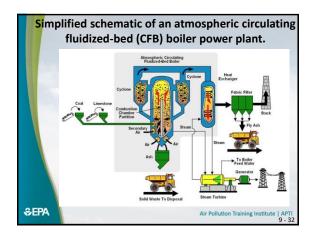




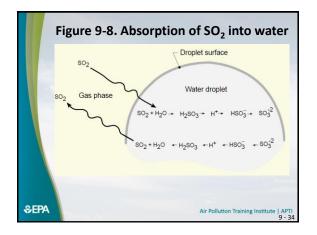


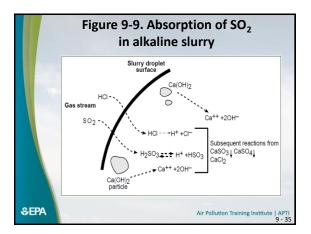


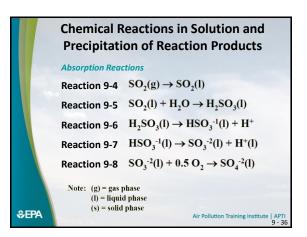


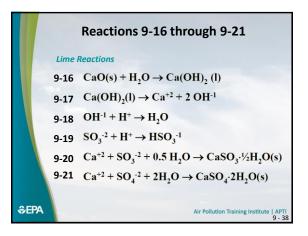


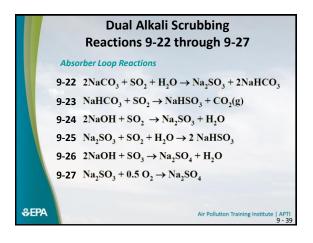


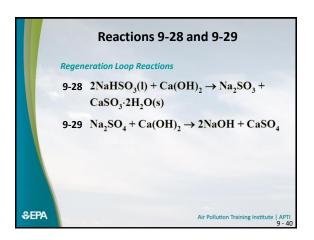


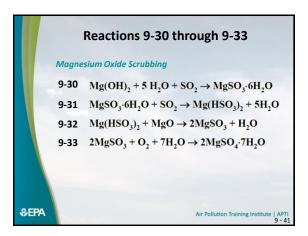


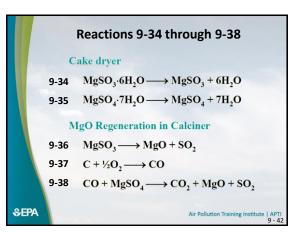


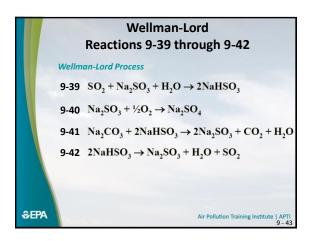


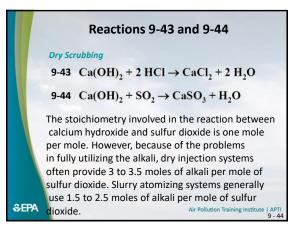


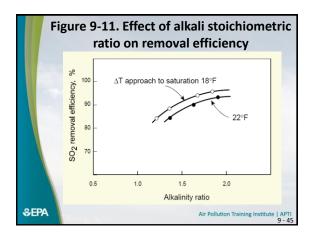


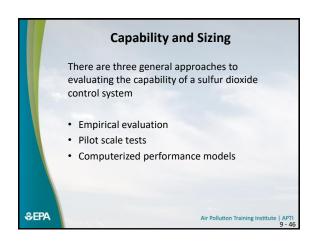


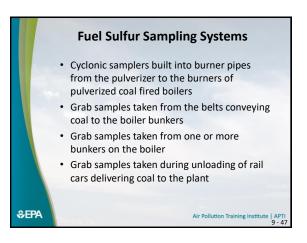

		Reactions 9-9 through 9-15
	Limest	one Reactions
	9-9	$CaCO_3(s) \rightarrow CaCO_3(l)$
	9-10	$CaCO_3(I) \rightarrow Ca^{+2} + CO_3^{-2}$
	9-11	$\mathrm{CO}_3^{-2} + \mathrm{H}^+ \rightarrow \mathrm{HCO}_3^{-1}$
	9-12	$\mathrm{SO}_3^{-2} + \mathrm{H}^+ \rightarrow \mathrm{HSO}_3^{-1}$
	9-13	$SO_3^{-2} + 0.5 O_2(l) \rightarrow SO_4^{-2}$
	9-14	$Ca^{+2} + SO_3^{-2} + 0.5 H_2O \rightarrow CaSO_3 \cdot \frac{1}{2}H_2O(s)$
	9-15	$Ca^{+2} + SO_4^{-2} + 2H_2O \rightarrow CaSO_4 \cdot 2H_2O(s)$
≎epa		Air Pollution Training Institute APTI

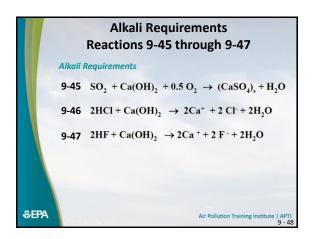


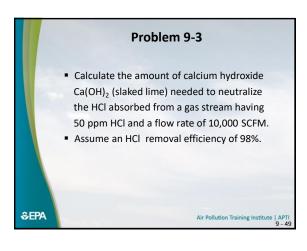


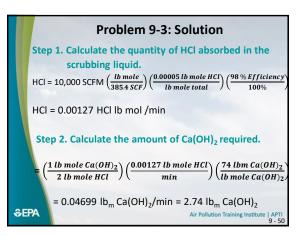


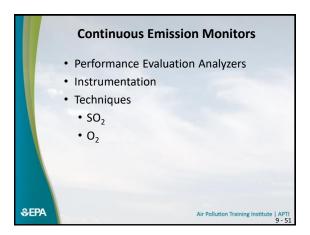


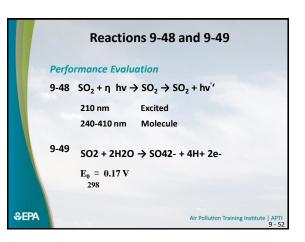


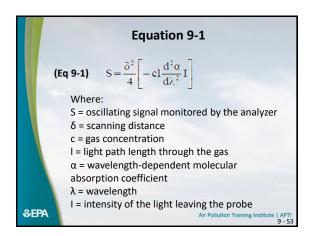


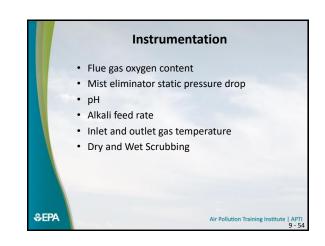


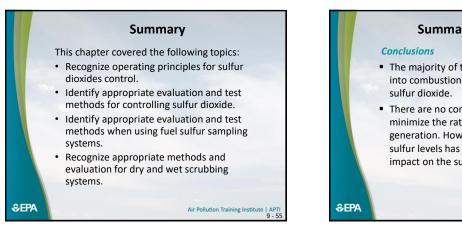




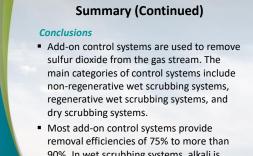




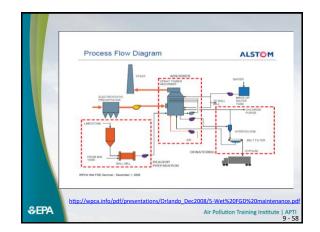


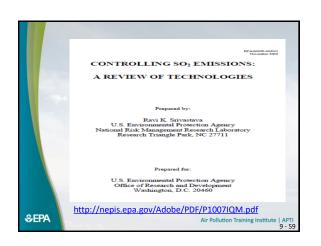


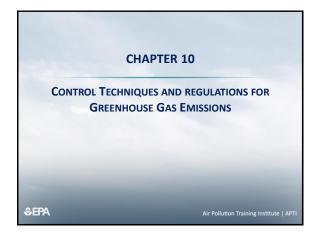
APTI 415 Course 415 Control of Gaseous Emissions


CHAPTER 9 SULFUR OXIDES CONTROL

Summary (Continued)

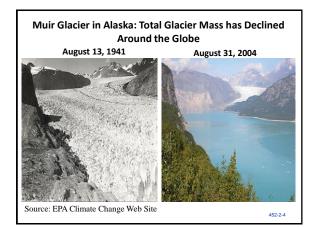

- The majority of the sulfur entering with fuel into combustion systems is converted to sulfur dioxide.
 There are no combustion modifications that
- There are no combustion modifications that minimize the rate of sulfur dioxide generation. However, the reduction of fuel sulfur levels has a direct and proportional impact on the sulfur dioxide emissions.

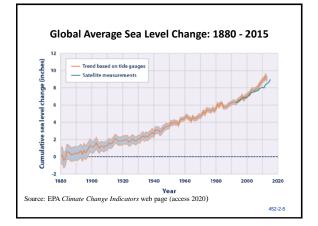

Air Pollution Training Institute | APTI 9 - 56

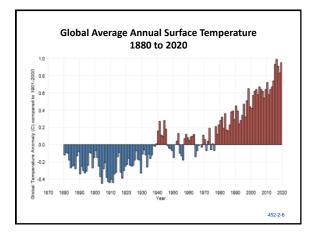


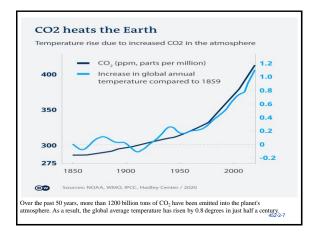
removal efficiencies of 75% to more than 90%. In wet scrubbing systems, alkali is injected into the gas stream to maintain the necessary sulfur dioxide absorption rates.

€EPA

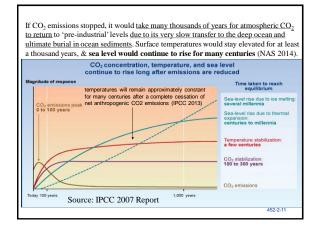


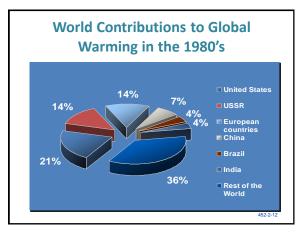


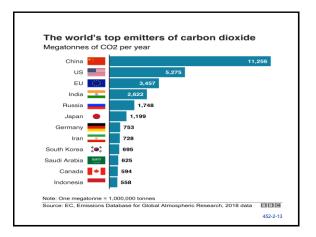


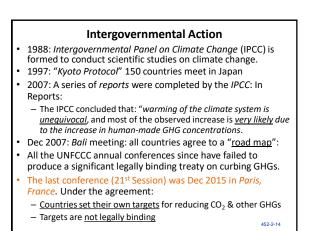


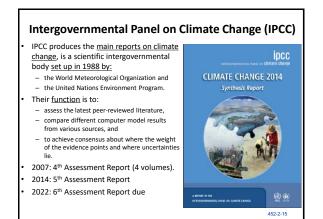
National Park, for example, there were 150 glaciers in 1850. Today, there are 26.

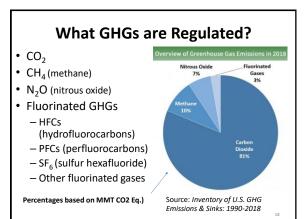


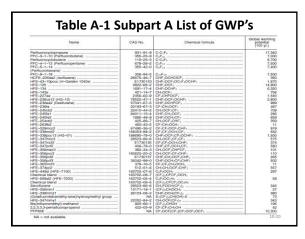

Predicted Effects of Global Warming: IPCC (2007 Report)


- An increase in global average annual precipitation during the 21st century, although changes in precipitation will vary from region to region.
- An increase in the intensity of precipitation events, particularly in tropical and high-latitude regions that experience overall increases in precipitation.
- Tropical storms and hurricanes are likely to become more intense, produce stronger peak winds, and produce increased rainfall over some areas due to warming sea surface temperatures (which can energize these storms).

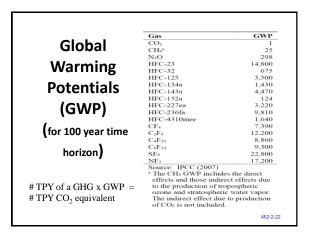


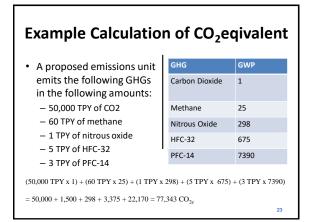






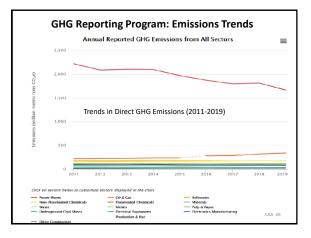
- April 2, 2007, <u>U.S. Supreme Ct.</u> held that EPA has authority to regulate CO₂ & other greenhouse gases (GHG) <u>from new motor vehicles</u>. (*Mass. v. EPA*)
- The Ct. determined that CO_2 & GHGs fit the CAA δ 312 definition of "air pollution"

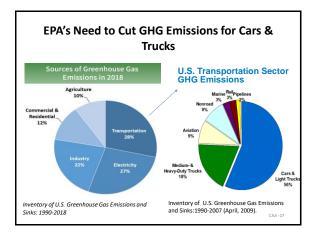

CAA -17



Name	CAS No.	Chemical formula	Global warming potential (100 yr.)
Carbon dioxide	124-38-9	CO2	1
lethane	74-82-8	CH4	
litrous oxide	10024-97-2	N2O	310
FC-23	75-46-7	CHF3	11,700
FC-32	75-10-5	CH2F2	650
C-41	593-53-3	CH/F	150
C-125	354-33-6	C2HF3	2,800
C-134	359-35-3	C2H2F4	1,000
C-134a	811-97-2	CH ₂ FCF ₂	1,300
-C-143	430-66-0	C2H3F3	300
FC-143a	420-46-2	C2H3F3	3,800
FC-152	624-72-6	CH_FCH_F	53
FC-152a	75-37-6	CH ₃ CHF ₂	140
FC-161	353-36-6	CHICH2F	12
FC-227ea	431-89-0	C3HF7	2.900
FC-236cb	677-56-5	CH ₂ FCF ₂ CF ₃	1.340
FC-236ea	431-63-0	CHF2CHFCF3	1.370
FC-236fa	690-39-1	C3H2F6	6.300
FC-245ca	679-86-7	CiHiFi	560
C-245fa	460-73-1	CHE-CH-CE.	1.030
FC-365mfc	406-58-6	CH1CF2CH2CF1	794
FC-43-10mee	138495-42-8	CF3CFHCFHCF3CF3	1,300
ulfur hexafluoride	2551-62-4	SE	
ifluoromethyl sulphur pentafluoride	373-80-8	SF3CF3	17,700
itrogen trifluoride	7783-54-2	NF3	17.200
C-14 (Perfluoromethane)	75-73-0	CE4	6.500
C-116 (Perfluoroethane)	76-16-4	C-E4	
FC-218 (Perfluoropropane)		CiFa	

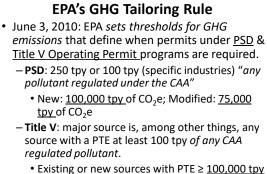
Name	CAS No.4	Global warming potential
Methane	74-82-8	25
Nitrous oxide	10024-97-2	298
HFC-23	75-46-7	14.800
HFC-32	75-10-5	673
HFC-41	593-53-3	93
HFC-125	354-33-6	3.50
HFC-134	359-35-3	1,100
-FC-134a	811-97-2	1,430
HFC-143	430-66-0	350
HFC-143a	420-46-2	4,470
HFC-152a	75-37-6	12
HFC-227ea	431-89-0	3.220
HFC-236fa	690-39-1	9,810
HFC-245ca	679-86-7	690
HFC-43-10mee	138495-42-8	1.640
Sulfur hexafluoride	2551-62-4	22,800
PFC-14 (Perfluoromethane)	75-73-0	7,390
PFC-116 (Perfluoroethane)	76-16-4	12,200
PFC-218 (Perfluoropropane)		8,830
PFC-3-1-10 (Perfluorobutane)	355-25-9	8,860
Perfluorocyclobutane	115-25-3	10,300
PFC-4-1-12 (Perfluoropentane)	678-26-2	9,160
PFC-5-1-14 (Perfluorohexane)	355-42-0	10-21 9,300

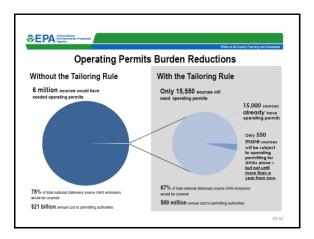


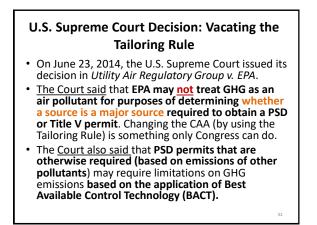

GHG Reporting Program

- On Oct 30, 2009, EPA issued 40 CFR Part 98, which <u>requires reporting of GHG emissions</u> from large sources and suppliers in the United States.
- <u>Purpose</u>: to develop policies and programs to address climate change.
- Under Part 98, <u>suppliers</u> of fossil fuels or industrial GHGs, <u>manufacturers of vehicles</u> and engines, <u>and facilities that emit ≥ 25,000 metric</u> <u>tons per year</u> of GHG emissions are required to <u>submit annual reports to EPA</u>. (first reports submitted in 2011)

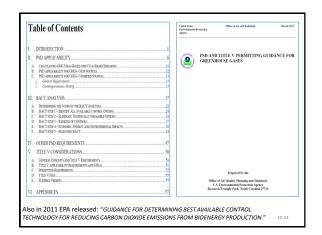
CAA -24


Power Plants	Petroleum and Natural Gas Systems	Refineries	Chemicals	Other	Minerals	Waste	Metals	Pulp and Paper	Total Reported Emission What's this
1,669	341	178	186	127	115	110	90	35	2,850
1,369	2,350	138	449	1,307	380	1,471	295	220	7,624
	Refineries								
								bsector in	0
	Chemicals							bsector in orted 2020))


EPA Regulations to Cut GHG Emissions for Cars & Trucks


- In May 2010, EPA passed CO₂ emission standards for light duty vehicles (cars & trucks) for years 2012 to 2016.
- In Oct <u>2012</u>, EPA passed CO₂ emissions standards for cars & trucks: model years 2017 - 2025.
- In April 2020, EPA amended the GHG emissions standards for passenger cars & light trucks & established new less stringent standards, covering model years 2021 - 2026.

- - Existing or new sources with $PTE \ge 100,000 \text{ tpy}$ of CO₂e 10-29


PSD Permitting Burden Reductions With the Tailoring Rule Without the Tailoring Rule 82,000 permitting actions per year would need to address GHGs Only 1,600 permitting actions per 700 p already occu will need to 900 more 67% of tota 78% of total national stationary source GHG er with facilities where actions could have occurred \$36 million \$1.5 billion an al cost to permitting a 10-

PSD: Major for One, Major for All Policy

- Once a source is <u>major</u> for any regulated NSR pollutant, BACT is required for <u>each regulated</u> <u>NSR pollutant</u> that is emitted above its *"significant quantity."*
- Any source which is required to obtain a PSD permit will have to apply a GHG BACT if their GHG emissions exceed 75,000 tpy of CO₂e (significance quantity).
 - This significant quantity was recognized by EPA in July, 2014 memo. EPA passed a *proposed rule* establishing this level on August 26, 2016.

BACT for GHGs

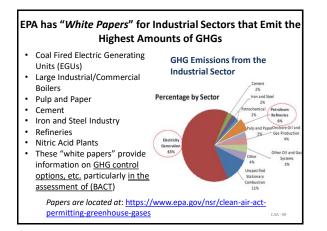
- BACT is a <u>case-by-case</u> determination
 - Provides considerable discretion to the permitting authority
 - EPA does <u>not</u> prescribe GHG BACT for any source type
- EPA did publish GHG BACT guidance for EGUs
 - <u>Clean fuels</u> need to be considered
 - Feasibility of <u>CCS</u> needs to be considered in BACT analysis (presently too expensive to be selected)
 - Focus on <u>energy efficiency</u> as means of reducing GHGs
- NSPS serves as a floor for BACT determinations

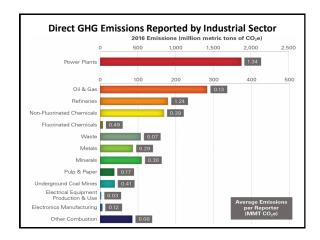
CAA -35

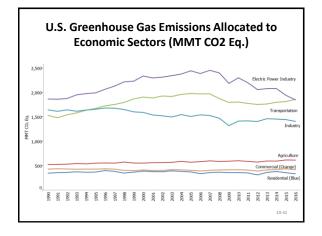
BACT Determinations Steps

- Step 1: <u>Identify</u> available pollution control options.
- Step 2: Eliminate technically infeasible options.
- Step 3: Rank controls by control effectiveness.
- Step 4: Evaluate controls by <u>cost</u> and energy & environmental impacts.
- Step 5: Make the BACT selection.

10-36

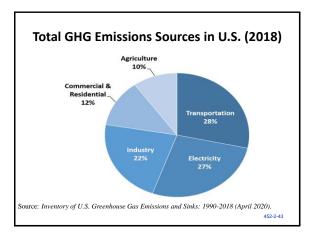

BACT Determination Example


- Control A: 60% efficient @ cost = \$50,000/yr.
- Control B: 90% efficient @ cost = \$60,000/yr.
- Control C: 94% efficient @ cost = \$90,000/yr.
- Control B would be BACT because it is the most *cost effective* for tons of pollutant removed.


10-37

Carbon Capture and Storage (CCS)

- CCS is "available" and should be considered in Step 1.
- CCS may be <u>eliminated in Step 2</u> if technically infeasible for the proposed source;
 - i.e., no space available for CO₂ capture equipment at an existing facility; right-of-ways prevent building a pipeline or access to an existing CO₂ pipeline; no access to suitable geologic reservoirs for sequestration or other storage options.
- Currently, <u>CCS is an expensive technology</u> and makes the price of electricity from a power plant uncompetitive, even when underground storage of the captured CO₂ exists near the power plant. Therefore, <u>CCS will often be eliminated from consideration in</u> <u>Step4.</u>



CAA -44

NSPS: CAA Section 111

- CAA Section <u>111(b)</u>: Requires EPA to establish emission standards for any category of **new** and modified stationary sources that "causes, or contributes significantly to, air pollution which may reasonably be anticipated to endanger public health or welfare."
- CAA Section <u>111(d)</u>: Required for existing sources upon promulgation of a <u>111(b)</u> standard for new and <u>modified sources</u> in specific circumstances (whose pollutants are not regulated under NAAQS or HAPs under the CAA).

Carbon Pollution Standards (NSPS) for <u>New</u>, <u>Modified and Reconstructed EGU</u>

- <u>August 3, 2015</u>: Because EGUs are the largest contributor of GHGs (33%), EPA says Section 111(b) "significantly contribute" requirement is satisfied. Therefore EPA passed a NSPS for GHG emissions for new, modified & reconstructed EGUs.
 - Does <u>not apply to "existing"</u> units that have <u>not</u> been modified or reconstructed.
 - Only regulates CO₂ emissions (will not regulate nitrous oxide or methane (both are GHGs)).
 - Has different standards for different types of new EGUs.

CAA -45

Carbon Pollution Standards (NSPS) for <u>New,</u> <u>Modified & Reconstructed</u> EGUs

- New and Reconstructed Natural gas-fired stationary turbines
 - 1,000 lb CO2/MWh gross for all base load units
 - Non-base load units uses clean fuel-based input standard
 - base-load is determined by design efficiency and sales
- *Modified* gas-fired units: EPA is not setting a standard at this time.

Carbon Pollution Standards (NSPS) for <u>New,</u> <u>Modified & Reconstructed</u> EGUs

- New coal-fired Energy Generating Units

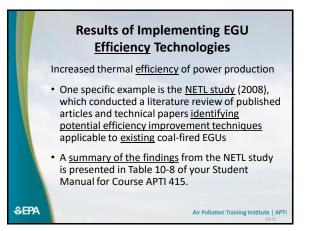
 1,400 lb CO2/MWh gross limit & include partial carbon capture and storage (CCS)
- Modified coal-fired EGUs:
 - applies only to <u>modifications</u> resulting in an increase of hourly CO2 emission of <u>more than 10 percent</u>
 - will be required to <u>meet a standard</u> consistent with its best historical annual performance during the years from 2002 to the time of modification.
 - <u>no CCS required</u>
- Reconstructed coal-fired EGUs:
 - 1,800 lb CO2/MWh-gross limit for sources with heat input greater than 2,000 MMBtu/hr.
 - 2,000 lb CO2/MWh-gross limit for sources with a heat input of less than or equal to 2,000 MMBtu/hr.

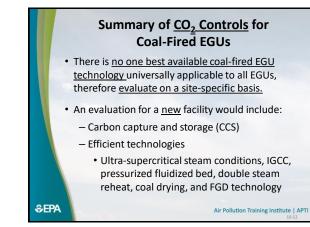
New "Significant Contribution" Test for GHG δ111(b) NSPS

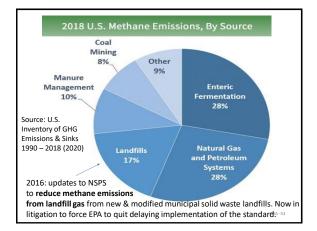
- On January 7, 2021, an EPA final rule provides that source categories can contribute significantly [δ111(b)] if their GHG emissions exceeds 3 percent of total U.S. GHG emissions.
 - Above this threshold, then <u>secondary criteria</u> can be used to further evaluate (i.e. vulnerability to international trade competition).
- EPA <u>also determined that EGU source category contributes</u> <u>significantly</u> because their GHG emissions are substantially above the 3% threshold. (The EGU source category represents over 25% of total U.S. GHG emissions.)

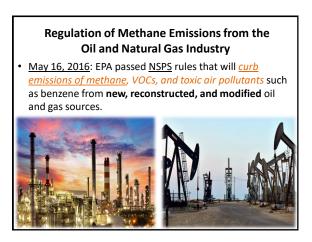
CAA -48

Carbon Pollution Standards For Existing EGUs

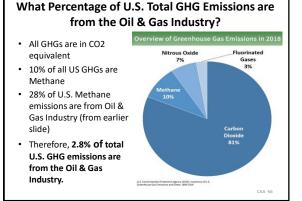

- <u>Aug 3, 2015</u>: Clean Power Plan (CPP) rule was passed under CAA J111(d) for "existing" sources.
 – EPA establishes guidelines for emission standards. States then
 - A similar to reduce the program of the similar to the
- Feb, 2016: SCOTUS puts a "stay" on CPP-to allow lawsuits
- June 19, 2019 EPA passed Affordable Clean Energy (ACE) rule – replacing CPP.
 - Controls would be based on efficiency improvements.
- Lower EGU CO2 emissions between 0.7% & 1.5% by 2030
- Jan 19, 2021: The app. Ct. struck down the 2019 ACE rule
- Also, criticized the EPA that it only allowed to regulate emissions directly at the source (the power plants themselves) rather than across the power sector as a whole.

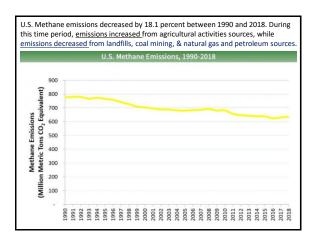

CAA - 19

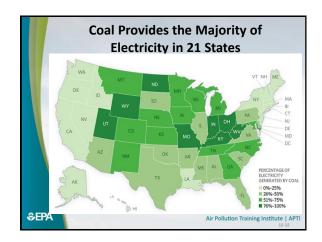

- This opens the door for CO2 cap & trade or CO2 taxing

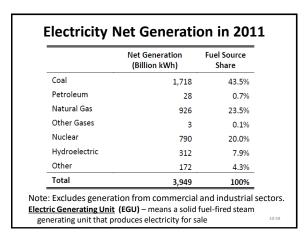

Many CO₂ Reduction Opportunities

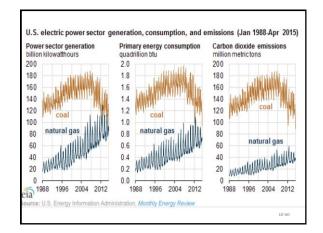
- Heat rate improvements
- Fuel switching to a lower carbon content fuel
- Integration of renewable energy into EGU operations
- Combined heat and power
- Qualified biomass co-firing and repowering
- Renewable energy (new & capacity uprates)
- Wind, solar, hydro
- Nuclear generation (new & capacity uprates)
- Demand-side energy efficiency programs and policies
- Demand-side management measures
- Electricity transmission and distribution improvements
- Carbon capture and utilization for existing sources
- Carbon capture and sequestration for existing sources

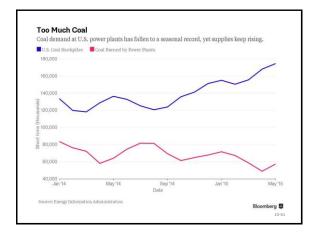


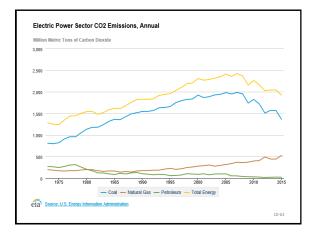


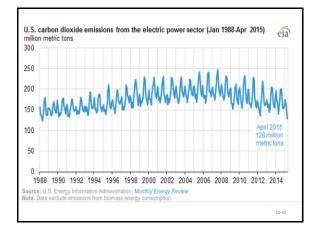


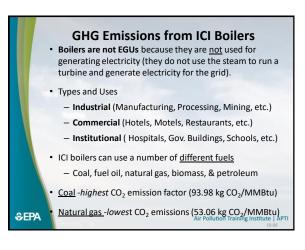

Regulation of Methane Emissions from the Oil and Natural Gas Industry

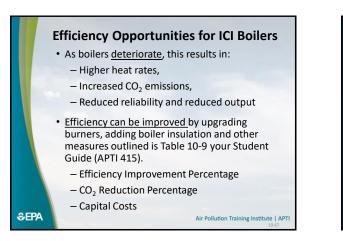

- <u>Aug 13, 2020</u>, EPA passed a final Rule that make changes to the NSPS for emissions from the oil and gas industry by rescinding the <u>methane</u> NSPS for all segments of the oil and gas industry.
 - The <u>Rule finds that the 2016 NSPS regulation of</u> methane was improper, because the Obama EPA did not establish criteria to support its "significant contribution" finding. Therefore, the additional methane control requirements in the 2016 rule are thereby removed from NSPS regulation.

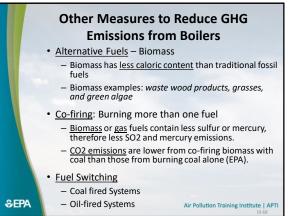


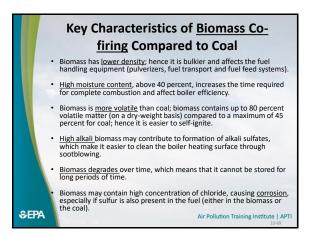


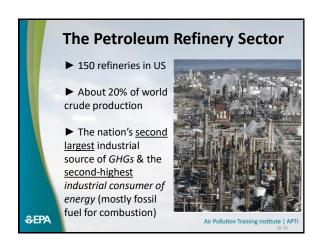


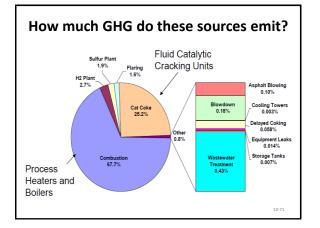


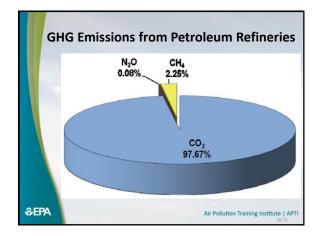


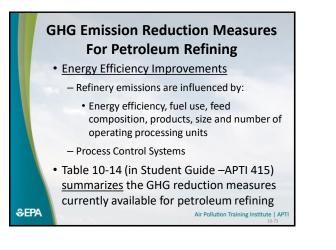

	CO ₂ Emission Factors for Coal					
	Coal Rank	CO ₂ Emissions per Unit of Heat Input (Ibs CO ₂ /MMBtu)				
	CoarAanK	U.S. Average	Range Across States with Coal Rank Deposits			
	Anthracite	227.4	227.4			
	Bituminous	205.3	201.3 to 211.6			
	Subbituminous	211.9	207.1 to 214.0			
	Lignite	216.3	211.7 to 220.6			
	Source: U.S. EIA (Hong, R. and E.	Slatick, 1994).				
\$EP/	A	also better because i and lignite coals.	it has less moisture than Air Pollution Training Institute APTI 10-64			

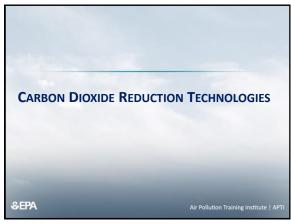

	Higher Heating	Typical	Coal Delivered for U.S. Electric Power Production in 2008 ^{c,d}		
Coal Rank ^a	Value (HHV) Range Defined by ASTM D-388	Coal Moisture Content ^b	Total Coal Quantity Delivered Nationwide (1,000 tons)	Average Ash Content	Average Sulfur Content
Bituminous	>10,500 Btu/lb	2 to 16%	463,943	10.6%	1.68%
Subbituminous	<10,500 Btu/lb and >8,300 Btu/lb	15 to 30%	522,228	5.8%	0.34%
Lignite	< 8,300 Btu/lb	25 to 40%	68,945	13.8%	0.86%
The largest <u>sc</u> Appalachian I The vast maj	urces of bitumino Mountains, in sout ority of <u>subbitumi</u>	us coals bu hern Illinoi: nous coals	rned in EGUs are m	ines in regions	along


Selected characteristics for major coal









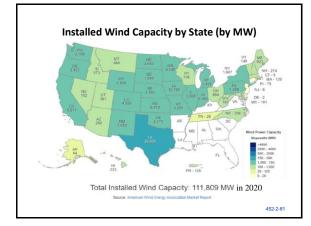
Adaption & Mitigation

- Adaptation and mitigation are <u>two strategies for</u> responding to climate change.
- Adaptation is the process of <u>adjustment to climate</u> <u>change</u> & its effects in order to either lessen harm or exploit beneficial opportunities.
 - i.e. farmer planting more drought-resistant crops to a city ensuring that new coastal infrastructure can accommodate future sea level rise.
- Mitigation is the process of <u>reducing emissions</u> or enhancing sinks of GHGs, so as to limit future climate change.

452-2-75

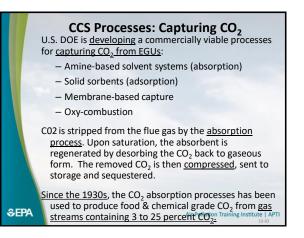
Possible Mitigating Solutions

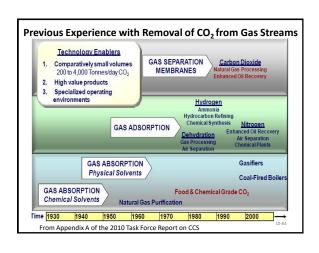
- <u>Carbon cap & trade system and carbon tax</u>
- Reducing the carbon intensity of the energy sector
 - Energy efficiency
 Eliminate coal-fired power plants
 In 2015, 50% of nations electricity was from coal-fired plants. In 2020, it was reduced to 20% because of increase efficiency & reduced cost of alternative forms of energy (including low cost of natural gas). Source: U.S. Energy Information Agency
 - Carbon capture & sequestration
 - Alternate forms of energy production: wind, solar, nuclear power, & biomass technologies
 - Clean energy vehicles & green buildings
- Conservation of forests, wetlands, agriculture, land use

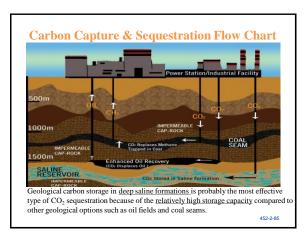

452-2-76

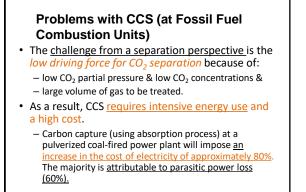
Sector	Key mitigation technologies and practices currently commercially available	Key mitigation technologies and practices projected to be commercialized before 2030
Energy supply [4.3, 4.4]	Improved supply and distribution efficiency, fuel switching from coal to gas; nuclear power; renewable heat and power (hydropower, solar, wind, goothermal and bioenergy); combined heat and power; early applications of Carbon Capture and Strange (CS, e.g. storage of removed CO ₂ from natural gas).	CCS for gas, biomass and coal-fred electricity generating facilities; advanced nuclear power; advanced renewable energy, including tidal and waves energy, concentrating solar; and solar PV.
Transport [5.4]	More fuel efficient vehicles; hybrid vehicles; cleaner diesel vehicles; biofuels; modal shifts from road transport to rail and public transport systems; non-motorised transport (cycling, walking); land-use and transport planning.	Second generation biofuels; higher efficiency aircraft; advanced electric and hybrid vehicles with more powerful and reliable batteries.
Buildings [6.5]	Efficient lighting and daylighting; more efficient electrical appliances and heating and cooling devices; improved cook stores, improved insulation; passive and active solar design for heating and cooling; alternative refrigeration fluids, recovery and recycle of fluoritated gases.	Integrated design of commercial buildings including technologies, such as intelligent meters that provide feedback and control; solar PV integrated in buildings.

Sector	Key mitigation technologies and practices currently commercially available	Key mitigation technologies and practices projected to be commercialized before 2030
Industry [7.5]	More efficient end-use electrical equipment; heat and power recovery; material recycling and substitution; control of non- CO ₂ gas emissions; and a wide array of process-specific technologies.	Advanced energy efficiency; CCS for cement, ammonia, and iron manufacture; inert electrodes for aluminium manufacture
Agriculture [8.4]	Improved orop and grazing land management to increase sol cation storage, restoration of cultivated peaky solia and degraded lands; improved rice cultivation techniques and investock and manue management to reduce CH, emissions; improved nitrogen faitlizer application techniques to reduce N ₂ O emissions; dedicated energy crops to replace fossil fuel use; improved energy efficiency.	Improvements of crops yields.
Forestry/forests [9.4]	Afforestation; reforestation; forest management; reduced deforestation; harvested wood product management; use of forestry products for bioenergy to replace fossil fuel use.	Tree species improvement to increase biomass productivity and carbon sequestration. Improved remote sensing technologies for analysis of vegetation/ soil carbon sequestration potential and mapping land use change.
Waste management (10.4)	Landfill methane recovery; waste incineration with energy recovery; composting of organic waste; controlled waste water treatment; recycling and waste minimization.	Biocovers and biofilters to optimize CH_{g} oxidation.






Carbon Capture and Storage (CCS): A Three Step Process


- <u>Capture</u> of CO₂ from power plants or industrial processes
 Transport of the captured & compressed CO. (usually in
- <u>Transport</u> of the captured & compressed CO₂ (usually in pipelines)
- Underground injection and geologic sequestration (also referred to as storage) of the CO₂ into deep underground rock formations. These formations are often a mile or more beneath the surface and consist of porous rock that holds the CO₂. Overlying these formations are impermeable, non-porous layers of rock that trap the CO₂ and prevent it from migrating upward.
- EPA's CCS Web site: http://www.epa.gov/climatechange/ccs/index.html#Federal

452-2-82

March 2015 AWMA Article

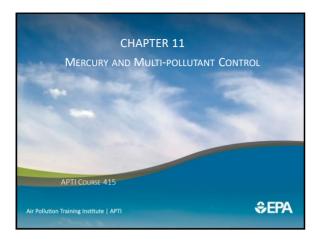
- The challenge from a separation perspective is:
 - that the flue gas from conventional fossil fuel combustion exhibits <u>relatively low CO2 concentrations</u> (i.e., 10–15 vol% from coal-fired boilers and 4–7 vol% from natural gas combined cycles and boilers) and
 - low pressures (i.e., near atmospheric pressure).
- This results in a low driving force for CO2 separation (i.e., low CO2 partial pressure) and a <u>large volume of gas to be</u> <u>treated</u>. As a result, PCC <u>requires intensive energy use</u> and tends to incur a large equipment footprint and a high cost.
- Carbon capture (using absorption process) at a pulverized coal-fired power plant equipped will impose <u>an increase in</u> <u>the cost of electricity (COE) of approximately 80%</u>. Of this COE increase, the majority is attributable to parasitic power loss (60%).

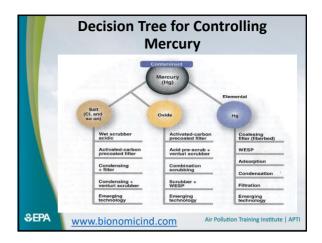
U.S. Task Force on CCS: 2010 Report

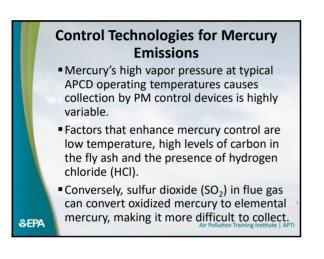
- Concluded that cost-effective deployment of CCS will occur only if the technology is <u>commercially</u> <u>available at economically competitive prices</u> and supportive national policy frameworks are in place.
- Barriers:
 - <u>First</u>, rates of conversion must be comparable to rates of CO₂ capture.
 - <u>Second</u>, energy requirements for conversion must be low.
 - <u>Third</u>, potential volumes of reactants and/or products may limit the scale of reuse relative to total emissions.

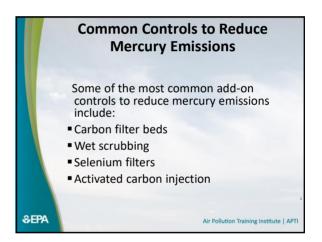
452-2-88

10-86

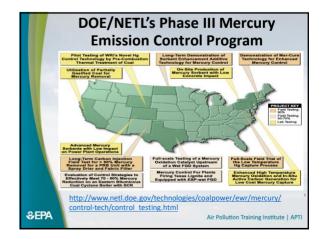

Congressional Research Service Report (Jan. 2020)


- Analysts expect that the <u>costs of CCS</u> (on new or existing facilities) are likely to total *several billion dollars per project*, <u>which could act as a barrier to</u> <u>future CCS</u> deployment without the continuation of subsidies.
- To date in the U.S., there are <u>nine DOE-supported</u> <u>CCS projects</u> (injected large volumes of CO₂ into underground formations).
- <u>Earthquakes induced by CO₂ injection could fracture</u> the rocks in the reservoir or, more importantly, the caprock above the reservoir.

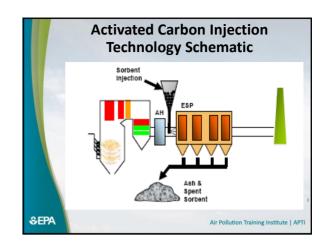

452-2-89

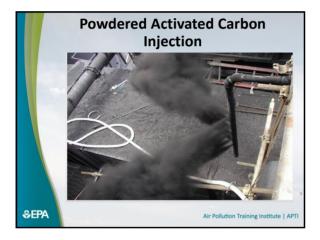

CO₂ Mineralization

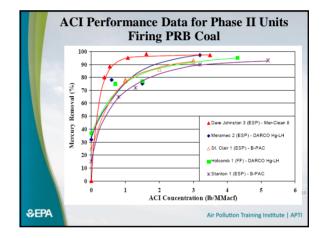
- This is a <u>chemical reaction</u> that occurs when certain minerals are exposed to the CO₂, resulting in the <u>CO₂ being transformed into</u> <u>rock</u>.
 - <u>CO₂ mineralization processes fall under three main categories:</u>
 Carbonation: CO₂ reacts with calcium (Ca) or magnesium (Mg) oxide to form a solid carbonated mineral. <u>These carbonated products can be used in building materials</u>, etc.
 - Concrete Curing: A similar process to carbonation, but with a focus on producing solid <u>calcium carbonate (CaCO₃) -limestone</u>,. (It can also be added to concrete).
 - Novel Cements: CO₂ is used as an ingredient within the cement. The CO₂ is mineralized within the cement as a solid carbonate, creating a new carbon negative cement.
- CO₂ mineralization is one of the only options that <u>results in</u> permanent storage of CO₂ as a solid. Other technologies merely delay the time that the CO₂ takes to go back into the atmosphere.


Controlling Power Plant Mercury Emissions

Currently, there are two main approaches being considered for controlling power plant mercury emissions:


- Reducing mercury emissions using technologies primarily designed to remove SO₂, NO_x, and particulate emissions (often called co-benefit reductions), and
- Reducing mercury emissions using technologies specifically designed to reduce mercury in coal prior to burning.


€PA


Air Pollution Training Institute | APTI

