

04/18

1

04/18

6

04/18

8

04/18

9

Calculation Inspections

□ Confirm Input Data

□ Stack Pressures

Stack PressuresStack Temperature

Calibration Factors

$$v_s = K_p C_p \sqrt{\frac{T_s \Delta p}{P M}}$$

$$P_s = P_b + \frac{p_s}{13.6}$$

Δp - Velocity pressure

The difference between the two pressure taps of a pitot tube (determined by averaging the square roots of all the Δp readings. Note -- DO NOT take average of readings and then take the square root).

Calculation Inspections
□ Stack Volume
□ Stack Area
□ Flow
Stack Gas Volumetric Flow Rate $Q_s = A_s V_s$
$Q_s = A_s K_p C_p \left(\frac{T_s \Delta p}{P_s M_s}\right)$
Q_{sd} (ft ³ /hr) = 3600 x (1 - B_{WS}) $A_s V_s \frac{T_{STD} P_s}{T_s P_{STD}}$

Fuel Type	F ₄		F _w		F _c		Fo		
	dacm/j (x10°)	ded/ 10° BTU	wscm/J (x10 ²)	ded/ 10° BTU	*cm/J (x10°)	ed/ 10⁴ BTU			
Conl:									
Anthracite	2.71	10,100	2.83	10,540	0.530	1,970	1.016-1.130		
Bituminous	2.63	9,780	2.86	10,640	0.484	1,800	1.083-1.230	<u> </u>	
Lignite	2.65	9,860	3.21	10,950	0.513	1,910	1.016-1.130	ć	
Oil:	2.47	9,1901	2.77	10,3204	0.3831	1,4204	1.260-1.413		
							1.210-1.370		
Gas									
Natural	243	8,710	2.85	10,610	0.287	1,040	1.600-1.836		
Propune	2.34	8,710	2.74	10,200	0.321	1,190	1.434-1.586		
Butane	2.34	8,710	2.79	10,390	0.337	1,250	1.405-1.553	,	
Wood	2.48	9,240			0.492	1,830	1.000-1.120		
Wood Bark	2.58	9,600			0.516	1,920	1.003-1.130		
Municipal Waste	2.57	9,570			0.488	1,820			

04/18 31

Physical Inspections Temperature Probe Condition Calibrated Probe Long Enough to Reach, Not Too Long Heated SS or Glass Liner Marked (Heat Resistant) for Traverse Points Rinsed During Sample Recovery

04/18 35

Instrument Inspections
□ Always Check Applicable Method & Subpart
□ Instrument Span
□ Calibration Error
□ <+/- 2 % of Span for Zero, Mid, & High Range Gases
□ Sampling System Bias
□ <+/- 5% of Span for Zero & Mid or High Range Gases
□ Zero Drift & Calibration Drift
□ <+/- 3% of Span Over the Period of Each Run
□ Interference Check

04/18

61