

Course Overview

- Plastic resin uses
- Plastic resin theory / operation
- Air pollution control devices
- Implementing regulations
- Typical permit conditions
- Inspection procedures
- Federal regulations

Resins

Uses of Polyester Resins

- Aircraft / Aerospace / Automotive
- Marine / Railroad applications
- Electrical / Electronic components
- Construction / Building materials
- Packaging materials
- Consumer / Institutional products
- Corrosion resistant products
- Business equipment
- Furniture / Furnishings

Common Plastic Materials

- Polycarbonate
- Polyethylene
- Polystyrene
- Polypropylene
- Polyurethane
- Polyvinyl Chloride
- Polyesters

Polycarbonates

- Created to compete with die-cast metals
- Strong, tough & rigid
- Excellent electrical insulators
- Mostly electrical uses

•	٦,

Polyethylene: PET

- Clear, very tough polymer
- Excellent barrier against O₂ and CO₂
- Good chemical resistance
- Soft drink bottles
- Fiber (the polyester 70s!!!)
- Magnetic tape (audio & video)

A		
ດ		
_	•	٠,
	L	•

High Density Polyethylene

- High density version of PE
- Excellent protective barrier properties & Strong
- Milk, juice & H₂O container
- Household chemicals
- Detergents

Low Density Polyethylene

- Low density version of PE
- Offers clarity & flexibility
- Provides ductility
- Grocery & garbage bags
- Shrink & stretch films

Polypropylene

- "Workhorse" of plastics
- High tensile strength
- High melting point
- Good chemical resistance
- Packaging & carpeting
- Automotive & appliances

Polystyrene

- Foamed or Expanded Polystyrene : EPS
- Exceptional insulation properties
- Foam cups & containers
- Foodservice products
- Packaging & protecting

Recycled Polystyrene

•	١
	J
۰	

Polyurethanes

- Foam : bedding, auto seats, cushioning, carpet underlay
- Insulation & flotation
- Polyurethane coatings
- Abrasion resistant : printing rolls, conveyor belts, gaskets & seals

Polyvinyl Chloride (PVC)

- Chemical, abrasion & weather resistance
- Pipes & sidings
- Leather-like upholstery
- · Gloves, boots & apparel

Introduction to Composites

- Made up of 2 or more components
 - Fibrous reinforcing network embedded in the cured resin matrix
 - Types of reinforcements →Fiberglass, Carbon fiber & Kevlar®
 - Thermosetting type resin is a plastic that cures from a liquid to a solid state
 - → Polyester, Vinyl, Epoxy & Urethane

Carbon Fiber

- Stiffest & strongest reinforcing fibers for polymer composites
- Used together with epoxy
- Race cars
- Space applications
- Sporting equipment

Fiberglass

- Made of silicon oxide
- Produced by a spinning process
- Pulled through a nozzle from molten glass
- Reinforcing materials
- Automotive and naval industries, sporting equipment

Fiberglass Forms

- Surfacing Mat (Veil)
- Chopped Strand Mat
- Roving (Spool)
- Woven Roving
- Cloth (Hand Lay-up)

1	4

Fiberglass Advantages

- High strength
- Low price
- Dimensional stability
- Temperature resistance
- Corrosion resistance
- Low weight
- Excellent dielectric properties

Types of Fiberglass • E-glass and S-glass • E-glass → Good electrical properties • S-glass → Very strong, stiff, and temperature resistant

Glass Fiber Reinforced Resin

- Most used composites
- Temp resistance & strength
- Impregnating fibers with liquid epoxy resins
- Aircraft components
- Casings for missiles, pipes, tanks, pressure vessels

Kevlar®

- Lightweight Flexible Comfortable
- High Tensile Strength
- Excellent Dimensional Stability
- High Flame Resistant
- High Chemical Resistant
- Used with epoxy or vinyl resin

Kevlar®

- Protective & Performance Apparel
- Composites : aircraft parts/boats
- Fiber-Optic Cables
- Tires
- Ropes & Cables
- Brake Pads & Clutch Linings
- Power Transmission Belts / Hoses

Types of Plastic Materials Thermoplastic Resins - become fluid upon heating - repeatable & reversible process - no chemical change - no permanent change in physical prop. - readily extruded or molded e.g.. film, fibers, bottles etc. Polyethylene, Polystyrene & Polypropylene **Types of Plastic Materials** Thermosetting Resins - irreversibly polymerizes and solidifies - chemical structure permanently altered - cannot be resoftened - process called curing or hardening e.g.. Molding, casting, powder coating Polyurethanes, Polyester & Epoxy resins Thermoplastic vs. **Thermosetting** Faster molding **Design constraints** Lower emissions Limited unit production Lower costs Performance requirements Easy recycling Market demands Low labor intensity

Thermoset Resins • Two Common Types → Epoxy & Polyester → Molding, Laminating, Casting - Epoxy → Higher Performance & Higher Price → High Strength, Weight Critical

→ Dimensionally Accurate Applications

Polyester Resins • Building Blocks for Polyester Resins → Acids & Glycols Cooked Together → Dissolved in Styrene Monomer → Inhibitors Added to Delay Reaction • Product Added to a Peroxide Catalyst → Unsaturated Portions of Monomer and Polyester React Together → Hard Solid Mass

Fabrication With Polyesters

- → Reinforcements such as a Glass Fiber in a Mold
- → Saturated with Polyester Resin
- → Resin Mixed with Catalyst Causing Crosslinking Reaction
- → This Causes Resin to Harden from Liquid to Solid
- → Polyester Resin in Fiberglass Boat Mfg.

Fabrication With FRP

- → Fabricating with Metals : Structure is Produced & External Paint is Applied
- → Fabrication with FRP : Reverse
- → Start with Mold
- → Pigmented Polyester Coating (Gel Coat) is Applied to the Mold
- → Structural Reinforcement is Built **Using Fiber Glass & Polymer Resin**
- → Finished Part is Removed from Mold

#			
1			
1			
	00		
	23		

Cultured Marble Consists of → Crushed Marble & Stone (Mined) High Strength Polyester Resin Protective Gel Coat on the Surface Mixture is Poured into a Mold Allowed to cure and shrink Part is trimmed and polished

Cultured Onyx Consist of → Alumina Trihydrate Polyester Resin Content 28 - 35% Protective Gel Coat on the Surface Products are translucent They have an added visual depth or a 3-D effect

Cultured Granite Consists of → Crushed Stone & Mineral Chips Polyester Resin Content 40% Protective Gel Coat Offers the Beauty of Quarried Granite Low Cost Stain Resistant Coating

Process and Control

- Types of Open Molding Operations
 - -Hand lay-up & Spray-up
 - -Continuous lamination
 - -Pultrusion
 - -Filament winding
 - -Casting or molding
 - -Infusion or scrimp

Hand Lay-Up

- Simplest Type / Very Flexible
- Apply Gel Coat, Resin, Fiberglass by Hand
- Roller or Brushes Used for Resins
- High Strength to Weight Ratio
- High Styrene Emissions
- Suitable for Prototypes & Low Volume Production

•			
•			
•			
•			
•			
•			
•			

Spray-Up

- Versatile Process
- Cost Effective Method of Producing Large Open-Molded Parts
- Chopped Fiberglass is Sprayed With
 - → Catalyzed Resins onto Gel Coat
 - → Compacted

				·
	_	_	_	·

Approved Spray Guns

- High Pressure Airless Guns
- Air-Assist Airless Guns
- Electrostatic Spray
- High Volume Low Pressure (HVLP) *
- Fluid Impingement Technology (FIT) Spray Gun *

Pultrusion

- Pulled extrusion process
- Fiberglass under tension
- Immersed in Resin bath or injection
- Pulled through forming dye
- Pulled through heated dye to cure
- · Produces flat stock for cutting
- VOCs at resin bath and forming area

Filament Winding Operations

- Used in Manufacture of:
 - -large pipes and storage tanks
 - hollow vessels subject to high internal pressure
- Strand Rovings are Pulled under Tension into a Resin bath
- Wound into Shape & Cured

Resin Transfer Molding

- Gel Coat is Applied to Mold
- Reinforcing Fibers are Placed into the Mold Cavity
- Mold Halves are Closed & Clamped
- Liquid Resin is Injected into the Mold Cavity
- → Suitable for High Vol. Production
- → Reduced VOC emissions

Emission Sources

- Gel coat Styrene Emissions
 - -Application (atomization)
 - -Curing
- Resin
 - -Styrene most common monomer
- Mixing
- Clean-up solvents

Application Step	38% Monomer	25% Monomer
Loss due to Atomization	5-7%	2-4%
Loss due to Curing	6-11%	4-9%
Total Loss	11-16%	8-11%

Process Materials

- General Purpose Resins: 35% styrene
- Specialty Resins : <50% styrene
- Most AQMD Rules : 35% styrene
- Tough Low Profile Resins <35% styrene
 - -Higher viscosity
 - -Need better surface prep
 - -Need good wet-out procedures

5	2
J	_

Solvents

- Acetone (widely used)
- Methyl Ethyl Ketone (MEK)
- Dibasic Ester (DBE)
 - less volatile, less flammable than acetone
- Water-based resin emulsifiers
 - detergent cleaners

Clean-Up Rules

- Cleaning with Compounds 50 to 200 g/liter VOC
- -Closed containers
- -Self-Closing Containers
- -Styrene soaked rags in closed containers

•		
•		
•		
•		
•		
•		
•		

Styrene: HAP Source

- Unsaturated aromatic HC
- Petroleum By-Product
- In Polyesters:
 - → Reactive Diluent
- Styrene : HAP (Hazardous Air Pollutants)

Styrene: HAP Source

- Foamed or Expanded Polystyrene : EPS
- Exceptional insulation properties
- Foam cups & containers
- Foodservice products
- Packaging & protecting

55

Styrene Emissions Determination Models

- A 540 lb. Drum of Gel Coat
 - → 38% VOC
 - → Applied by "Uncontrolled Spray" Techniques
 - ⇒ Emit 100 lb. of Emissions
- Two Drums of Gel Coat/day
 ⇒ 25 Tons of Emissions/Yr

Control of VOC Emissions

- Process change to control monomer emissions
- Low VOC Gel Coat
- Change from acetone to less volatile solvent
- Reclaim acetone (distill)
- ADD-ON equipment

Add-On Control Methods Incineration Absorption Adsorption Condensation Controls

_	_
^	

Federal Regulations

- 1990 Clean Air Act
 - NESHAPS: National Emissions **Standards for Hazardous Air Pollutants**
 - -HAPS: Hazardous Air Pollutants
 - -MACT: Maximum Achievable **Control Technology**
 - -New & Existing Major Sources

Federal Regulations

- 40 CFR Part 63 Subpart VVVV -- NESHAP for Boat Manufacturing
- 40 CFR Part 63 Subpart MMMMM -- NESHAP for Flexible Polyurethane Foam Fabrication
- 40 CFR Part 63 Subpart U -- NESHAP for **Group I Polymers & Resins**
- 40 CFR Part 63 Subpart JJJ -- NESHAP for **Group IV Polymers & Resins**

Federal Regulations

- 63 WWWW Reinforced Plastics Composites Production
- 63 III Flexible Polyurethane Foam Production 63 60 Area Source Flexible Polyurethane Foam
- 63 YY Generic MACT Acetal Resins, Polycarbonate, etc.
- 63 W Group II Polymers and Resins 63 000 Group III Polymers and Resins
- 63 6L Area Source Acrylic and Modacrylic Fiber Production
- 63 7H Polyvinyl Chloride and Copolymers Production
- 63 6D Area Source Polyvinyl Chloride and Copolymers
- 63 4H Wet Formed Fiberglass Mat
- 60 HHH NSPS for Synthetic Fiber Production
- **60 VVV NSPS for Polymeric Coating for Supporting Substrates**

_			
-			
-			
_			
_			
-			
-			
-			
-			
_			
_			
_			

Operation (Open Mold – Boat Mfg)	Application Method	HAP Weight %
Tooling Gel Coat	Any Method	40%
Pigmented Gel Coat	Any Method	33%
Clear Gel Coat	Any Method	48%
Production Resin	Atomized (Spray)	28%
Tooling Resin	Atomized (Spray)	30%

BACT and BARCT		
Polyester Resin Material	Monomer Weight %	
General Purpose Resin	<35%	
Specialty Resin	< 50%	
Clear Gel Coat	<50%	
Pigmented Gel Coat	<45%	

Typical Permit Conditions Daily Emissions Limits Gel Coat Monomer Content (weight %) Resin Monomer Content (weight %) Amount of Material Used Cleaning Material

Pre-Inspection Prepare inspection report form File review Regulation review Equipment check Pre-entry & entry Pre-inspection meeting Permit check.

Inspection Visible emission evaluation General upkeep & maintenance Maintenance records Operational records Any open containers? Self-closing containers Rags and waste in closed containers

