APTI Course 427

Combustion Source Evaluation

Chapter 7:
Combustion Source Emissions

Chapter Overview (outline)

- Energy Use and CO₂ Emissions
- Emissions Monitoring
- Reciprocating Engines and Combustion Turbines
- Natural Gas, No. 2 and No. 4 Oil Fired Boilers
- Coal Fired Boilers
- Wood Firing and Stoker Furnaces

Energy Use and CO₂ Emissions (outline)

- Efficiency of Various Systems
- Combustion Efficiency
- Thermal Efficiency
- Power Plant Efficiency
- CO₂ Efficiency

Efficiency of Various Systems

- Efficiency
 - Combustion Efficiency
 - Thermal Efficiency

Table 7-1. Typical Efficiency Levels				
System	Combustion Efficiency	Thermal Efficiency		
Boiler, gas-fired	100%	82%		
Steam-Elect. Coal Power Plant	99%	34%		
Simple Cycle Gas Turbine	100%	38%		
Combined Cycle Gas Turbine	100%	55%		
Cogeneration System	100%	50%-80%		

Cogeneration or Combined Cycle

- Combustion turbine (or engine) generator
- Using exhaust waste heat
 - Steam cycle generator
 - Matching waste heat to electric load
- Cogeneration

Combustion Efficiency

Loss due to CO

```
% Energy Loss = 0.00027 * ppm CO * \frac{20.0}{(20.9 - \%, O_2)}

Where:

ppm CO = CO concentration in E.G., dry basis

% O_2 = Oxygen concentration in E.G., % by volume, dry basis
```

Example 7-1. CO Heat Loss

How much heat is being lost out the stack of a natural gas-fired source, due to CO = 800 ppm when $O_2 = 4.2\%$?

Solution:

Insert the values for CO and O_2 into Equation 7-1.

0.00027 * 800 * 20.9/(20.9-4.2) = 0.27%

Combustion Efficiency (2)

Loss due to carbon in the ash

```
\overline{\%} \text{ Energy Loss} = \overline{\%} A * \% C/100 * 14100/HHV
```

Where:

```
%A = coal ash content, % by wt.

%C = fly ash carbon content (LOI), % by wt.

14,100 = heating value of pure carbon, BTU/lb

HHV = heating value of the coal, BTU/lb
```

Example 7-2. Carbon heat loss

If fly ash from a coal fired source has 4% combustibles and the coal has 11% ash and 12,700 BTU/lb, what is the approximate energy loss?

Solution:

Insert the data in Equation 7-2.

11% * 4% /100 * 14100/12,700 = 0.49%

Thermal Efficiency

- Efficiency can be defined several ways
- Look at combustion related efficiency, not thermodynamic cycle

Thermal Efficiency (cont.)

% Thermal Efficiency = Useful Output Energy / Energy Input

% Thermal Efficiency = 100% - % Energy Losses

Thermal Efficiency (cont.)

- 1. Sensible losses of hot exhaust gases venting to atmosphere.
- 2. Heat of vaporization losses from venting uncondensed water to atmosphere.
- 3. Unburned fuel in either the exhaust gases or discarded ashes.
- 4. Radiation/convection losses from the outside walls of the furnace and cooling water losses (reciprocating engines).
- 5. Miscellaneous small losses such as the energy in hot ashes that are discarded.

Thermal Efficiency (cont.)

Efficiency = 100
$$\left[1 - \left(\frac{20.9}{20.9 - \% O_2} \right) \left\{ \left(\frac{\Delta T}{4200} \right) - \left(\frac{0.49 * \% H_2O}{100} \right) \right\} \right]$$

Where: $\Delta T = Exhaust temperature minus ambient temperature %H₂O and %O₂ are measured exhaust concentrations after the last heat exchanger$

Thermal Efficiency

- Water vapor term available from Table 4-6
- Eqn 7-4 is simplified ASME test procedure
- Note how little data is required

Example 7-3. Thermal Efficiency

Determine the approximate efficiency of an oil-fired boiler where the stack temperature is 350°F, ambient temperature is 50°F, stack O₂ is 5% and stack water vapor content is estimated at 11% *Solution:*

Entering these values in Equation 7-4 gives:

$$100 \times \left(1 - \frac{350 - 50}{4200} \times \frac{20.9}{20.9 - 5} - 0.49 \times \frac{11}{100} \times \frac{20.9}{20.9 - 5}\right) =$$

$$100 - 9.39 - 7.08 = 83.5\%$$

Power Plant Efficiency

- Large high-pressure boiler
 - Boiler efficiency is similar to last example (84%)
- Overall heat rate
 - Steam power plant = 10,000 BTU/kw-hr
 - Theory (100% efficient) = 3410 BTU/kw-hr
 - e.g. 34% efficient
- Energy losses

Example 7-4.

How much energy is required to operate a 150-megawatt (MW) power plant with a heat rate of 10,200 BTU/kw-hr? What is the overall thermal efficiency?

Solution:

Multiply the heat rate by the load.

150,000 kw * 10,200 BTU/kw-hr = 1530 mmBTU/hr

The efficiency is the ratio of ideal energy to actual energy:

CO₂ Emissions

$$\frac{\text{lb CO}_2}{\text{mmBTU}} = \frac{\% \text{ fuel C/100}}{\text{HHV/10}^6} \times \frac{44}{12}$$

Table 7-2. CO, Typical Emission Rates			
Fuel	CO₂ lb/mmBTU		
Natural Gas	120		
No. 2 Oil, Diesel	165		
No. 6 Oil	180		
Bituminous Coal	185		
Lignite	300+		
Carbon	260		

Example 7-5. CO₂ Emissions

For a power plant that burns No. 6 oil at a rate of 1530 mmBTU/hr, what is the CO₂ emissions rate?

• Solution:

Take the CO_2 emission rate from Table 7-2 and multiply by the heat input.

1530 mmBTU/hr * 180 lb CO_2 /mmBTU = 275,400 lb CO_2 /hr

Emissions Monitoring (outline)

- Emissions Variability
- Measurement Methods

Calculating Emissions

Emissions Variability

- Reasons for emissions variation
 - Load changes
 - Start-up
 - Fluctuations in fuel properties
 - Operator implemented changes
 - Natural short term fluctuations
 - Changes in atmospheric conditions
- NOx and PIC fluctuations
- Boiler vs. engine emission variations

Emission Fluctuations

Table 7-3. Typical Variation in Emission Rates

Source and Cause of Variation, Time Scale		PIC
Boiler - operator instigated changes (1 hr)		0 to Excessive
Boiler - natural draft fluctuations (15 sec.)	±5%	±50%
Reciprocating engine - atmospheric change (12 hr)	±5%	±10%
Gas Turbine - atmospheric changes (12 hr)	±10%	±10%
Waste combustor - waste properties (15 min)	±15%	±75%

Measurement Methods

Methods

- Continuous Emission Monitoring Systems (CEM)
- Federal Reference Method Sampling Trains
- Indirect or Parametric Emission Monitoring (PEM)

Supporting data for direct measurements

- O₂ or CO₂ concentration
- Exhaust flow rate
- Exhaust moisture content
- Fuel flow rate or power output
- Ambient conditions

CEM System

CEM Systems

- Dealing with water
 - Avoiding condensation
 - Integrating wet and dry data
- Common types
 - Dry extractive
 - Dilution extraction

Federal Reference Method Sampling Trains

Indirect or Parametric Emission Monitoring (PEM)

- Feasibility
 - NOx on Engines
- CO, PIC uncertainty
- Basis
 - Load or fuel flow
 - Exhaust temperature

Calculating Emissions (outline)

 Measurements are concentration, reported emissions are different units

Correcting for Dilution

Emissions in lb/mmBTU

Emissions in lb/hr

Correcting for Dilution

ppm @ Y%O₂ = ppm(meas.)
$$\times \frac{20.9 - Y}{20.9 - \% O_2}$$
 (meas.)

ppm corrected to X%
$$CO_2 = ppm(meas.) * \frac{x\%}{\% CO_2 (meas.)}$$

Where: X and Y are percentages specified by the applicable emission standard for the source

Example 7-6. Dilution correction

If the measured NOx = $\overline{135}$ ppm and $O_2 = 4.7\%$, what is the NOx concentration when corrected to 3% O_2 ?

Solution:

Inserting the data in equation (7-6a):

135ppm
$$\times \frac{20.9 - 3}{20.9 - 4.7} = 149ppm$$

Emissions in lb/mmBTU

$$A\left(\frac{\text{lb}}{\text{mmBTU}}\right) = \frac{A \text{ (ppmdv)}}{1,000,000} \times \frac{\text{MW}_A}{385} \times \text{F}_d \times \frac{20.9}{20.9 - \%\text{O}_2}$$

Where:

```
ppmdv A = measured concentration of air pollutant A MW_A = molecular weight of A, 46 for NO_2, 64 for SO_2, etc. %O_2 = measured oxygen concentration, % by vol., dry basis 385 = std ft<sup>3</sup> / lb-mole of ideal gas F_d = dry F-factor, std ft<sup>3</sup> / mmBTU bituminous coal 9780
```

oil 9190 natural gas 8710 wood 9240

31

Emissions in lb/hr (stack data)

Measure stack flow and ppm wet

A
$$\left(\frac{lb}{hr}\right)$$
 = exhaust flow $\left(\frac{scf}{hr}\right) \times \frac{ppmw \text{ of A}}{1,000,000} \times \frac{MW_A}{385}$

Where:

A = pollutant species
 MW_A = molecular weight of species A
 exhaust flow is the total (wet) flue gas flow in standard cubic feet per hour

A is measured in a wet (not dried) sample

385 = the number of standard cubic feet of gas in a pound

mole @ 68°F. (MW/385 = gas density in lb/3)

Emissions in lb/hr (firing rate)

Measure emissions in lb/mmBTU (ppm dry & O2)

Record fuel use (firing rate)

Emissions
$$(lb/hr)$$
 = Emissions $(lb/mmBTU)$ × Firing Rate $(mmBTU/hr)$

Reciprocating Engines and Combustion Turbines

- Characteristics of Reciprocating Engines and Turbines
 - Natural gas, some with oil backup
 - Simple cycle efficiency
 - Efficiency with heat recovery
 - CO₂ and other emissions

Reciprocating Engines and Combustion Turbines (cont.)

- Emissions and Control
 - PIC: low + catalyst
 - Low NOx combustors for gas
 - SCR for gas & oil firing
 - SCR temperature issues
- Combined cycle SCR
 - Startup issues

SCR Installation

Natural Gas & Oil Fired Boilers (outline)

Characteristics of Boilers

- Nitrogen Oxides Control
- Sulfur Oxides Control

Particulate Emissions

Characteristics of Boilers

- Size range (of interest)
- Fuels/Emissions
 - Control equipment
 - PIC usually low
- Longevity
 - Some new, many older boilers

Gas & Oil NOx Control

- Combustion NOx controls
 - Low excess air and various burner adjustments
 - Staged combustion on large furnaces using specific combinations of burners
 - Low NOx burners
 - Over fired air
 - Flue gas recirculation
 - Natural gas reburning
 - Switching fuel
- SCR and SNCR

Gas & Oil SOx Control

- SO₂ Control
 - Fuel specification
 - Scrubbers
- SO₃ Control via plume visibility
 - Reducing oil sulfur content
 - Back end temperatures control
 - Very low excess air operation
 - Fuel additives

Gas & Oil Particulate Emissions

- Natural gas & distillate oil
- Residual oil

Pulverized coal

Solid fuels

Gas & Oil Particulate (2)

• ESP

Ash levels

- Disposal
 - Reinjection
 - Sale
 - Land fill

Coal Fired Boilers (outline)

Characteristics of Pulverized Coal Boilers

- Nitrogen Oxides Control
- Sulfur Oxides and Particulate Matter

Characteristics of PC Boilers

- Fuel flexibility PC design vs gas/oil design
- Design and operation
 - Heat transfer area
 - Soot blowers
 - Gas flow passage size
 - Fire box size
 - Temperature control with excess air
- Emissions NOx, particulate, SO₃

PC NOx Control

- Combustion control
 - Similar to oil
 - Fuel air distribution issues

- Fine tune the system
 - Baseline NOx reduced
 - Other problems also resolved

Sulfur Oxides and Particulate Matter

- Alternative coal supply impacts
- ESP problems with low S coal
- Side effects interaction of changes

Wood Firing and Stoker Furnaces (outline)

- Most stokers fire wood or MSW
- Characteristics of Stoker Furnaces
- Particulate Matter Emissions
- Nitrogen Oxides Control
- PIC and Dioxin-furans

Characteristics of Stoker Furnaces

Bed combustion control

Over bed combustion control

- Air use
 - Amount required
 - Trade offs

Stoker Particulate Emissions

- Grate retention of particulate
 - Inherent carryover
 - Fuel size
 - Feeder mechanism
- Built in multi-clones

Typical emissions 0.3 – 0.7 lb/mmbtu

Nitrogen Oxides Control

Grate area formation → no control

- Reburning
- SNCR

PIC and Dioxin-furans

- Amount of carbon emissions
- Over fire control of smoke, CO & VOC
 - CO levels
- Older stoker problems
 - Designs inappropriate for MSW
 - Furnace temperature control
 - Over fired air design
- Newer stokers

Chapter Summary

- Energy Use and CO₂ Emissions
- Emissions Monitoring & Measurement
- Reciprocating Engines and Combustion Turbines
- Natural Gas, No. 2 and No. 4 Oil Fired Boilers
- Coal Fired Boilers
- Wood Firing and Stoker Furnaces

Any Questions?