APTI Course 427

Combustion Source Evaluation

Chapter 5: Air Pollution Formation

Chapter Overview (outline)

- Introduction
- Acid Gases
- Particulate Matter
- Metals
- Nitrogen Oxides
- Smoke, Carbon Monoxide & Organic Compounds
- Opacity

Introduction (ouline)

Types of Pollutants

Actual Emission Rates

Potential Emission Rates

Clean Fuels

Types of Pollutants

Products of Incomplete Combustion (PIC)

 Pollutants resulting from inorganic contaminants in the fuel

• No_x

• Ozone, PM_{2.5}

Actual Emission Rates

• Measurements

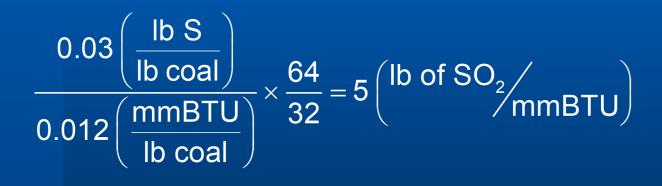
Mass balances
 Gives an upper limit

AP-42
– Generic, not specific

Potential Emission Rates

Table 5-1. Emissions Originating in the Fuel						
Fuel Constituent	Fuel Concentration		Pollutant Concentration		Primary Method of Control	
	No. 6 Oil	Coal	Species	Conversion		
Sulfur ⁽¹⁾	0.5 – 2%	1 – 4%	80 ₂	99%	Low sulfur fuel	
			H₂SO₄	1%	Very low excess air	
Ash	<0.05%	10%	Particulate	20 – 98%	Dust collector	
			PM-10, 2.5	20 - 80%	Dust collector	
Nitrogen ⁽²⁾	<0.5%	1%	NOx	10 - 50%	Combustion mod	
Chloride	(low)	(low)	нсі	100%	Fuel specs	
C _n H _m	98%	85%	с, со, нс	0 – small	Combustion tuning	

Notes: [1] SO₄ in the fuel does not convert to SO₂ or sulfuric acid. [2] Only organic nitrogen contributes to NOx formation.


Potential Emission Rates (cont.)

If 100% of contaminant converts to pollutant – eqn 5-1

Example 5-1. Potential emissions

 Determine the potential SO₂ emission rate for 3% sulfur coal with HHV = 12,000 BTU/lb.

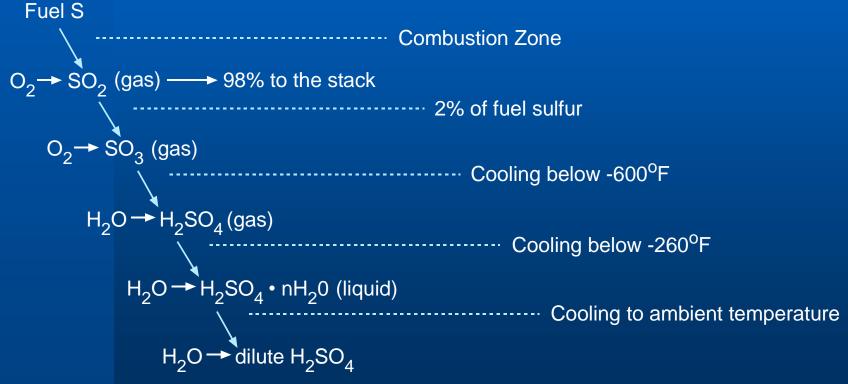
Clean Fuels

- Natural gas
 - Clean burning
 - Benefits catalysts
 - Significant pollutants
- Distillate oil
 - Some sulfur content
 - No premixed combustion

Acid Gases (outline)

• Sulfur Oxides

Hydrochloric Acid


Sulfur Oxides

SO₂
 – Emissions control by fuel S limits
 – Oxidizes slowly in the atmosphere

• SO₃ and Sulfuric Acid SO₃ + H₂O \rightarrow H₂SO₄

Fuel Sulfur Conversion

Sulfur Oxidation

If 2% of the sulfur in oil with 1.5% S is converted to SO_3 , what is the flue gas concentration?

Solution: (a) Determine emission rate (lb/mmBTU)

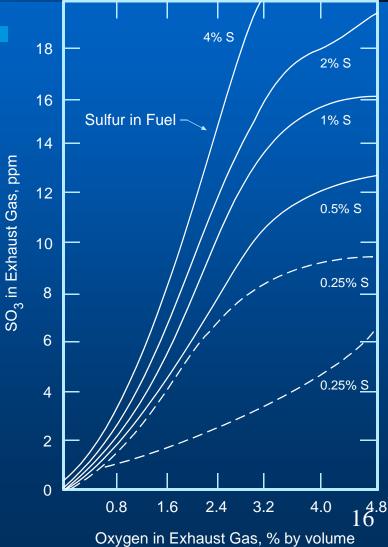
$$\frac{0.015\left(\frac{\text{lb S}}{\text{lb oil}}\right)}{0.0185\left(\frac{\text{mmBTU}}{\text{lb oil}}\right)} \times \frac{80}{32}\left(\frac{\text{lb SO}_3}{\text{lb S}}\right) \times 2\% = 0.0405\left(\frac{\text{lb SO}_3}{\text{mmBTU}}\right)$$

Convert this to ppm by volume

$$\frac{0.0405 \left(\frac{\text{lb SO}_3}{\text{mmBTU}}\right)}{10,500 \left(\frac{\text{ft}^3 \text{ fluegas}}{\text{mmBTU}}\right)} \times \frac{385}{80} \left(\frac{\text{ft}^3 \text{ SO}_3}{\text{lb SO}_3}\right) = 18.6 \text{ (10}^{-6}\text{)} = 18.6 \text{ ppm SO}_3$$

Correct this to a standard dilution level $(3\% O_2)$

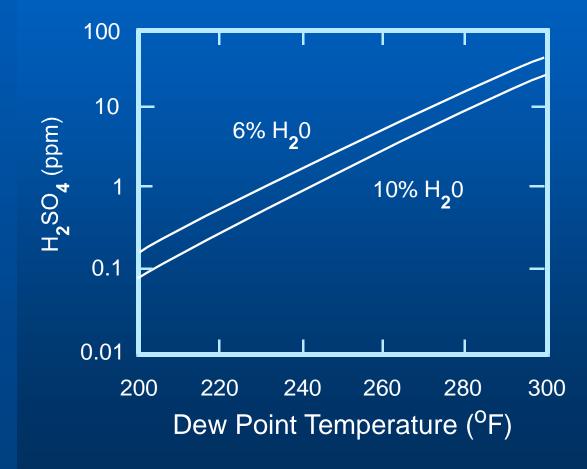
18.6 ppm
$$\times \frac{20.9\% - 3\%}{20.9\%}$$
 = 15.8 ppm SO₃ @ 3% O₂


Conversion of Fuel Sulfur to SO₃

• Small but uncertain

• Vanadium influence

Ash quantity and pH


Conversion of Fuel Sulfur to SO_3 (cont.)

Sulfuric Acid Effects

- Plume impacts
 - Regional visibility
 - Plume behavior
 - Downwash
- Corrosion
 - Damage
 - Fallout

Sulfuric Acid Dew Point

Ash Interaction with Sulfur Oxides

Coal ash
 Acid interaction
 Amount of scrubber solids

• #6 Oil ash

Additives

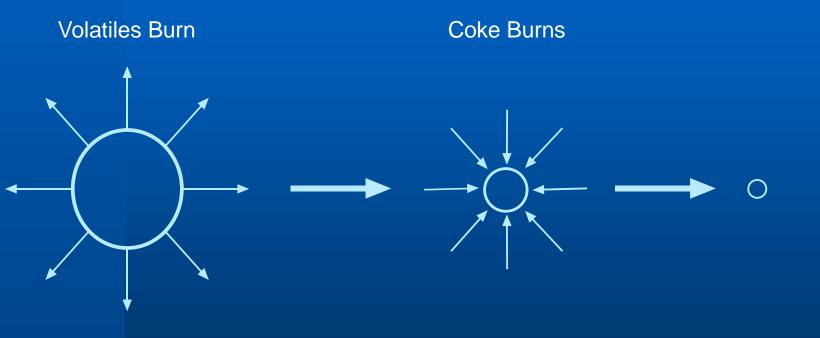
Hydrochloric Acid

• Organic vs Inorganic conversion $CI \rightarrow HCI$

Cl₂ versus HCI

CI contribution to dioxins

Particulate Matter (outline)


Particle Formation – two groups
 – Large Particles (mass)

Fine Particles (visibility)

 Enrichment of Some Chemicals in Fine Particles

Mass Emission Transients from Soot Blowing

Particle Formation - Large Particles

Coal Particle or Oil Droplet Evaporates Coke (Carbon)

Ash Particle

Formation of Coke and Ash Particulate

Particle Formation - Fine Particles

Formation mechanism

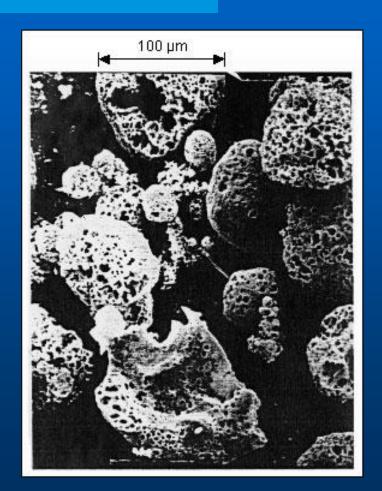
• 0.5 micron "limit"

• Species & particle surface area

Pulverized Coal Particulate

• Process

• Combustion time vs residence time


- Determine potential emissions for a PC furnace with coal properties are 9% ash and 12,500 BTU/lb. Assume 10% ash retention and no control.
- Solution:

$$0.09 \left(\frac{\text{lb ash}}{\text{lb coal}}\right) \div 0.0125 \left(\frac{\text{mmBTU}}{\text{lb coal}}\right) \times 90\% = 6.48 \left(\frac{\text{lb particulate}}{\text{mmBTU}}\right)$$

#6 Oil Emissions

- Particulate from
 - Ash
 - Sulfate
- Carbon
 - Coke
 - Soot (smoke)

Particulate from No. 6 Oil

Black Smoke

Formation

Combustion conditions required
 – Fuel rich area
 – Flame quenching

Natural gas flames

Sulfuric Acid and Sulfate Particulate

Acid or particulate or measurement method

- Coal-fired sulfate
- Oil-fired sulfate
- Formation factors
 - Fuel sulfur content
 - Vanadium
 - Excess air
 - Boiler ash deposits & temperatures

A boiler fires #6 oil containing 1.4% sulfur and HHV = 18,500 BTU/lb. How much particulate is formed if 2% of the sulfur is oxidized to sulfate?

Solution:

$$0.014 \left(\frac{\text{lb S}}{\text{lb oil}}\right) \div 0.0185 \left(\frac{\text{mmBTU}}{\text{lb oil}}\right) \times \frac{96}{32} \left(\frac{\text{lb SO}_4}{\text{lb S}}\right) \times 2\% = 0.045 \left(\frac{\text{lb particulate}}{\text{mmBTU}}\right)$$

Enrichment of Some Chemicals in Fine Particles

Table 5-2. Some Elements Enriched in Fine Coal Fly Ash				
Antimony	Gallium	Sodium		
Arsenic	Lead	Thallium		
Beryllium	Molybdenum	Uranium		
Cadmium	Nickel	Vanadium		
Chromium	Potassium	Zinc		
Copper	Selenium			

Mass Emission Transients from Soot Blowing

• Most emissions are emitted directly

Ash accumulation

Soot blowers

- Purpose
- Typical operation
- Air pollution impacts

Metals (outline)

Volatility of Metals and Compounds

 Determines fine or course particle size
 Affects health risk

Volatility of Metals and Compounds

• Examples – Table 5-3

Vapor species vs vapor pressure

• Chloride compounds

Combustion emissions – vapor phase

- Emission sources

 Municipal waste
 Coal fired utilities
- Chemical forms
- Environmental fate

Example 5-5. Mercury emissions

Determine daily mercury emissions for an 800megawatt power plant. Plant heat rate is 9900 BTU/kw-hr with a 60% utilization factor. It burns coal with 0.13 ppm mercury and HHV = 11,900 BTU/lb. Solution:

(a) Determine emissions rate

$$0.13 \left(10^{-6}\right) \left(\frac{\text{lb Hg}}{\text{lb coal}}\right) \div 0.0119 \left(\frac{\text{mmBTU}}{\text{lb coal}}\right) = 10.9 \left(10^{-6}\right) \left(\frac{\text{lb Hg}}{\text{mmBTU}}\right)$$

(b) Determine daily energy use:

$$800,000(kw) \times 9900 \left(\frac{BTU}{kw - hr}\right) \times 60\% \times 24 \left(\frac{hr}{day}\right) = 114,048 \left(\frac{mmBTU}{day}\right)$$

(c) Multiply energy use x emissions rate: $10.9 (10^{-6}) \times 114,048 = 1.24 \text{ lb/day Hg emissions}$

Nitrogen Oxides (outline)

- Overview of NO_x
- Thermal NO_x Formation
- NO_x Formation from Fuel Nitrogen
- Premixed and Diffusion Combustion
- NO_x from Typical Combustion Systems
- Control covered in Chapter 6

Overview of NO_x

- $NO_x = NO_2 + NO$
- NO₂ used for weight
- Ambient concentrations
- Ozone formation
- Other oxides
- All combustion makes NOx: N2 + O2 \leftrightarrow 2NO

Control Approaches

Two approaches

 Combustion strategies
 Back-end controls

Formation Mechanisms

• Thermal NOx

• Fuel NOx

Prompt NOx

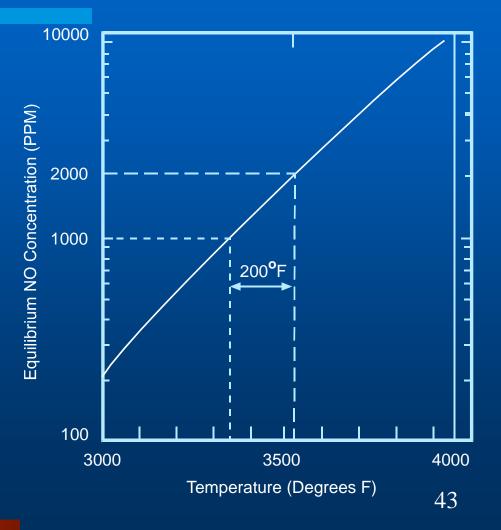

Typical Emission Rates

Table 5-4. AP-42 data for Uncontrolled NOx Emissions		
Combustion Source	AP-42 Units	Heat Input Units
Combustion Turbine	67.8 lb/1000 gal. fuel	0.5 lb/mmBTU
Diesel Engine	500 lb/1000 gal. fuel	3.7 lb/mmBTU
Utility Boiler Firing No. 6 Oil	67.8 lb/1000 gal. fuel	0.46 lb/mmBTU
Commercial Boiler Firing No. 2 Oil	20 lb/1000 gal fuel	0.15 lb/mmBTU
Pulverized Coal Boiler	21 lb/ton coal	0.81 lb/mmBTU
Wood Fireplace	1.8 lb/ton wood	0.15 lb/mmBTU

Thermal NO_x Formation

 $N_2 + O_2 = NOx$ Modeling in real flames is complex

No significant decomposition

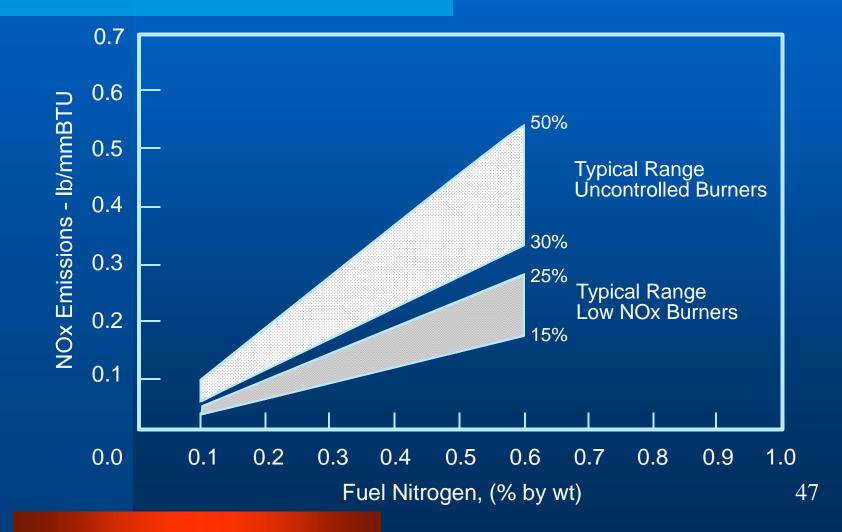
Fuel impacts on NOx
 – Amount formed
 – Control techniques

Analytical approaches to predicting NOx?

NO_x Formation from Fuel Nitrogen

• Fuel nitrogen can:

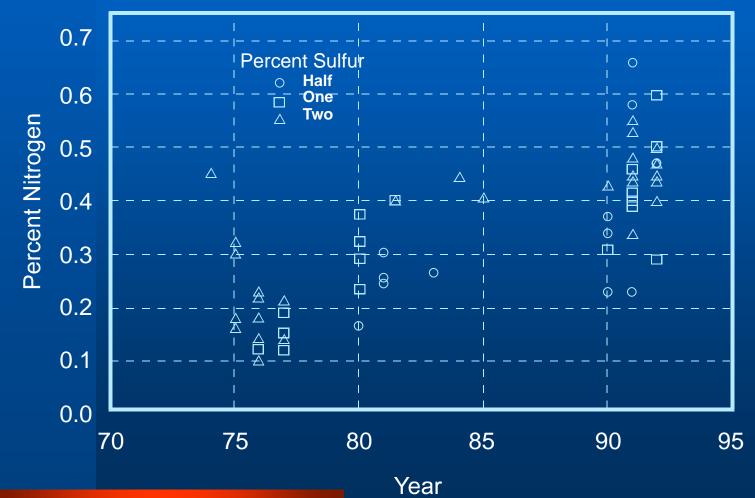
- react with oxygen to form NO, or
- react with another N atom to form N₂
- Affects boilers, not engines


Example 5-6. Fuel NOx

A utility fires coal with 1.3% N and HHV = 13,200 BTU/lb. Find the potential NOx emissions from fuel N.

Solution:

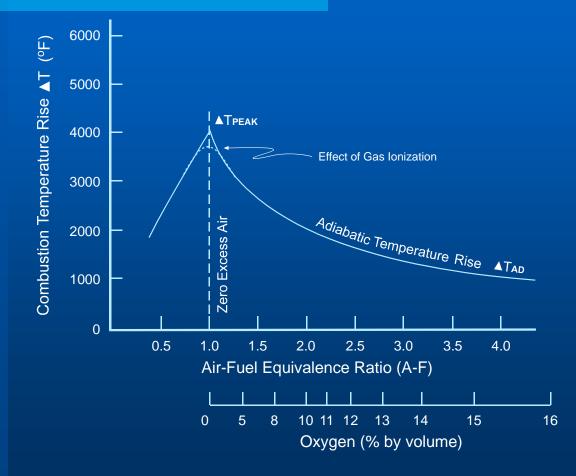
$$0.013 \left(\frac{\text{lb N}}{\text{lb coal}}\right) \div 0.0132 \left(\frac{\text{mmBTU}}{\text{lb coal}}\right) \times \frac{46}{14} \left(\frac{\text{NO}_2}{\text{N}}\right) = 3.2 \left(\frac{\text{lb NOx}}{\text{mmBTU}}\right)$$


NOx Emissions vs. Fuel Nitrogen

Typical Fuel N

Table 5-5. Typical Fuel Nitrogen ContentFuelNitrogen (% by wt.)Coal0.5 - 2Residual Oil0.3 - 0.6No. 2 Oil< 0.1</td>

Residual Oil Nitrogen vs. Time



49

Premixed and Diffusion Combustion

- Diffusion
 - Typical of most combustors
- Premixed
 - Gas & gasoline reciprocating engines
 - Some low NOx combustors
- Temperatures of premixed & diffusion flames (Fig. 4-5)
- O2 concentrations

Premixed and Diffusion Combustion (cont.)

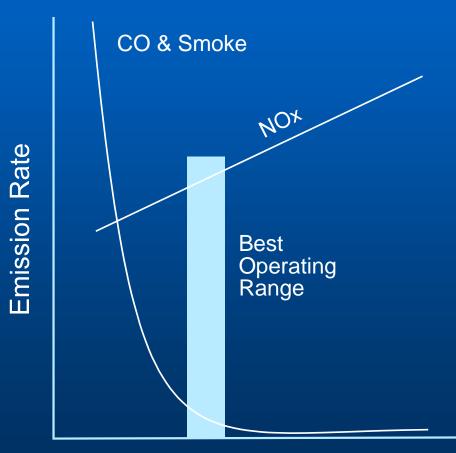
NO_x from Typical Combustion Systems (outline)

History of NOx control

Combustion versus back end

Combustor categories

Boilers and Furnaces
Reciprocating Engines
Combustion Turbines


Load range impacts

NO_x from Boilers and Furnaces

- Wide range of sizes & fuels
- Temperatures
- Air & fuel flow control
 Matching air to fuel
 Trade off of PIC & NOx (Fig. 5-9)

NO_x from Boilers and Furnaces (cont.)

Typical NO_x and CO vs. Excess Air

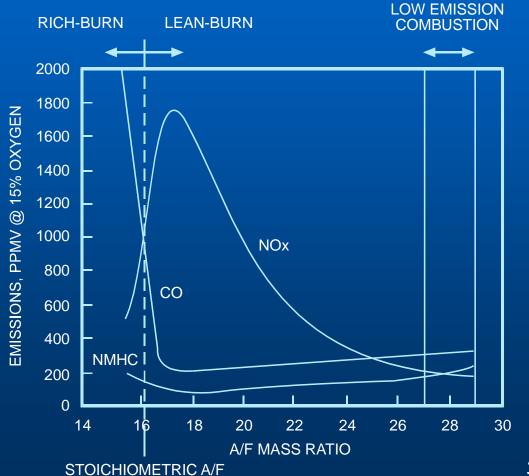
Excess Air or O₂

Fuel Effects on Boiler Emissions

- Three fuel categories:
 - (1) Clean fuels
 - (2) Residual oil, pulverized coal sander dust
 - (3) Solid fuels

Fuel Effects on Boiler Emissions (cont.)

Suspension versus grate burning


Size implications
 – Small boilers =?? Clean fuel
 – Multiple burner implications

NO_x from Reciprocating Engines

- Fuels
- Operating temperature & pressure
- NOx emission levels (Fig 5-10)
- Diesel versus gas engines
 - Diffusion vs premix
 - Rich burn & lean burn
- Emission predictability

NO_x from Reciprocating Engines (cont.)

Emissions vs. Excess Air for Gas Fired Engines

Combustion Turbines

• Overview

- Aircraft derivative
- Steady state combustion
- Traditional versus new "low NOx" combustors
- Fuel flexibility
- NOx emissions
 - Use of water injection
- Predictability
 - Integration of engine & emission controls
 - Ambient conditions

Smoke, Carbon Monoxide & Organic Compounds (outline)

- Complete Combustion and Fuel-Air Mixing
- Burner Geometry
- Excess Air
- Incinerator Temperatures
- Dioxin-Furan Formation

Complete Combustion and Fuel-Air Mixing

• PIC

- Organics (VOC)
- Smoke (carbon) & CO
- Startup & transient operation

• CO

- Surrogate for organics
- Typical levels

Elements of Complete Combustion

• Effective fuel air mixing

• Sufficient O₂

No quenching

3 T's of Combustion

• Temperature

• Turbulence

Burner Geometry

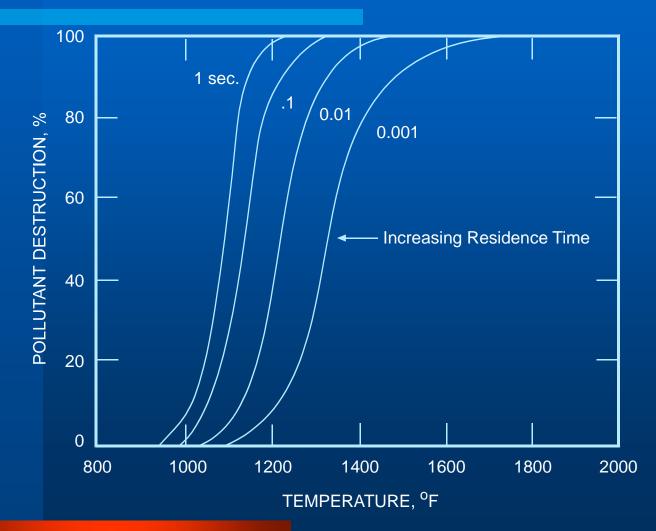
• Objective: complete, fast fuel-air mixing

Geometry (design) governs mixing

 Air flow pattern
 Fuel injection pattern

Good mixing → low PIC emissions
Low NOx combustion is different

Excess Air (review)


• A basic requirement

Burner performance characterized by LEA

• Minimum (& maximum) excess air levels

Operating for no smoke versus low NOx

Incinerator Temperatures

66

Solid Waste Incinerators

Basic design is important
 Nonuniform combustion is a given

• High temperatures typically necessary

Good excess air control

Dioxin-Furan Formation

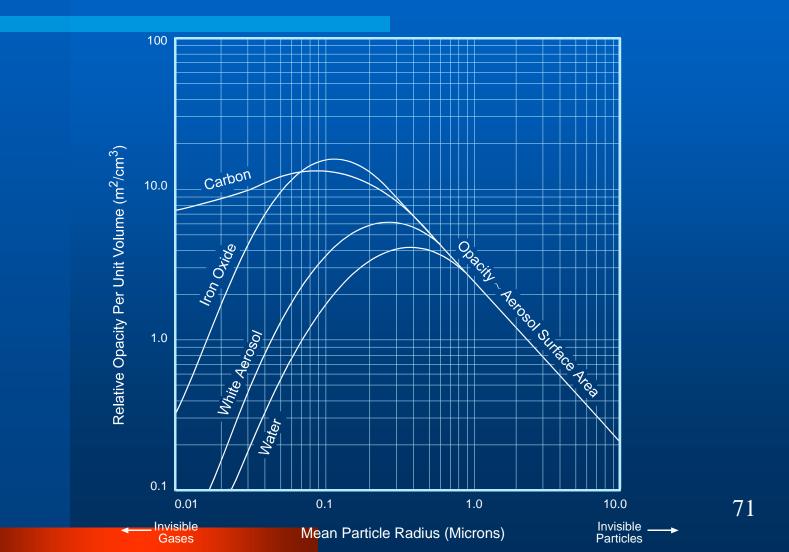
• PCDD and PCDF

- Stable & persistent
- Combustion generated
- Toxicity
 - Very low levels are of concern
- PIC formation
 - Mostly from CI aromatics, but . . .
 - Some organic fragments required
- Sources
 - Transformer fires, bad incinerators, forest fires
- Elimination

Dioxin-Furan Formation (cont.)

Back end formation
 - 500°F
 - Cl₂ & organic PIC

• Avoidance



Regulatory background

• Method 9 versus Method 5

• Opacity vs. Particle Size

Dust Opacity vs. Particle Size

Opacity vs. Emission Rate

Coal fired particulate emissions
Residual oil-fired particulate

- Mass emissions
- Black plumes
- White, brown, misc. plumes

• Sulfuric acid mist opacity

Conclusions

• Emission generating mechanisms

Pollutant quantity – conservation of mass

Combustion influence on PIC and NOx

• Particulate emissions

- Large particles
- Fine particles

Chapter Summary

- Introduction
- Acid Gases
- Particulate Matter
- Metals
- Nitrogen Oxides
- Smoke, Carbon Monoxide & Organic Compounds
- Opacity