APTI Course 427

Combustion Source Evaluation

Chapter 4: Fundamentals of Combustion

Chapter Overview (outline)

Introduction

- Combustion Mass Flows, Stoichemistry
- Enthalpy of Combustion & Heating Values
- Combustor Size and Residence Time

Introduction (outline)

- Chemical Balance
- Heat Input Rate- Conservation of Energy
- Fuels & Air Flow- Conservation of Mass
- Excess Air
- Water Vapor in Exhaust Gas

Chemical Balance

$$CH_4 + 2O_2 \rightarrow HEAT + CO_2 + 2H_2O$$

(fuel) (air) (exhaust gas)

Chemical Balance (methane)

$$CH_4 + 2O_2 \rightarrow HEAT + CO_2 + 2H_2O$$

(fuel) (air) (exhaust gas)

- Chemical balance -> air flow matches fuel flow
- Combustion products are non polluting even if the fuel is legally hazardous/toxic
- Considerable water is generated
- Nitrogen (most of the air) isn't shown

Missing Elements

- Nitrogen
 - Air is 78% N₂, about 79% "inert" species
 - Fuel is <10% of the combustion mass flow
- Extra air excess air required for complete combustion

- Contaminants in the fuel
 - Inorganic elements cause air pollution

Heat Input Rate

- Conservation of energy
 - Fuel flow: enough to satisfy load demand

- Design capacity, heat input, or firing rate
 - May be expressed as the maximum BTU/hr, horsepower, MW, steam flow rate, etc.
 - Fundamental limit is heat transfer mmBTU/hr
 - Design capacity appears on name plate or original construction documents

Heat Input Rate (cont.)

- Rated capacity can change by a small amount
 - Up rated if original hardware was oversize
 - Down rated from deterioration or deliberate change
- Operating a system above rated capacity can greatly increase maintenance & repair costs.
- Boiler system components have some margin
 - Fuel feeders to handle substandard fuel
 - Fans to accommodate air leaks

Heat Input Rate (cont.)

- Boiler is limited by max heat flux (mmBTU/hr)
- Fuel feed matches boiler design firing rate:
 - cubic feet per hour (gas fuels)
 - gallons/hour (oil)
 - tons/hr (coal, wood or waste)
- Relationship
 Fuel energy (BTU/lb) * Fuel mass flow (lb/hr) = Firing rate (BTU/hr)

Example 4-1. Boiler oil flow

 Determine the oil flow rate to a boiler operating at 85 mmBTU/hr. Residual oil HHV is 150,000 BTU/gallon.

• Solution:

Fuel and Air Flow – Conservation of Mass

 Combustion requires fuel and air – the total exhaust flow is the sum (eqn 4-3)

Fuel mass flow + Air mass flow = Exhaust gas mass flow

- Fuel flow is 1/10 or less of the total flow
- Fuel flow varies with load.
- Fuel/air ratio should be fairly constant.

Excess Air

- Stoichiometric air flow amount of air required per chemical balance
- Equivalence ratio = actual A/F over stoich A/F
 - Equiv ratio = 1 when air flow is stoich
 - Equiv ratio <1 with insufficient air (smoking)
 - Equiv ratio >1 with excess air
- Excess air defined
 - Total air flow = Stoichiometric air + Excess air
- Products of incomplete combustion (PIC)

NOx and CO Emissions vs. Excess Air

Excess Air (cont.)

- The amount of excess air required depends on the combustion system
- The better the combustion system, the less excess air required.
 - The best oil & gas systems can operate at about 3% excess air without significant PIC.

Excess Air Ranges

Table 4-1. Typical Minimum Excess Air Levels				
Type of Combustion		Excess Air	% Oxygen	
Suspension firing: oil, gas, pulverized coal		5-15%	1-3%	
Cyclone (crushed coal)		10-15%	2-3%	
Stoker grate: coal, wood, solid waste		30-75%	5-9%	
Fluid	zed bed	5-150%	1-13%	
Combust	ion Turbine	250%	15%	
Lean burn reciprocating engine		>5%	>1%	

Excess Air (cont'd)

- Reasons to operate at LEA
 - Better thermal efficiency
 - Lower NOx
 - More load capacity on some boilers
- Objectives of good combustion performance
 - System capable of LEA
 - Continuous operation at LEA

Water Vapor in Exhaust Gas

- Water from fuel hydrogen
- Typical flue gas amounts

```
    Natural gas 20% by vol.
```

• Oil 10% by vol.

Coal 6% by vol.

Green wood 18% by vol.

Ambient air 2% by vol.

Water condenses when flue gas cools

Effects of Water Vapor

HHV

Condensation

Flame temperature

Combustion Mass Flows, Stoichiometry

- Objective: show that firing rate can be calculated from stack data
 - Primary data required are stack flow and O₂
- This is true except when
 - Source is firing very wet fuel
 - Source process adds gas to the flow
- Using stack data to get firing rate is useful
 - When the firing rate is unknown or questioned
 - As a QC check of emissions test data

Combustion Mass Flows, Stoichiometry (outline)

Stoichiometric Air Flow

Excess Air

- Water Vapor
- Calculating Gas Volume and Density

Stoichiometric Air Flow

$$CH_4 + 2O_2 \rightarrow HEAT + CO_2 + 2H_2O$$

Chemical balance defines air/fuel mass ratio

- Deriving an equation for air & real fuel:
 - Insert fuel analysis data for C, H, S, O
 - Insert molecular weights
 - Insert air data (20.9% O₂, etc)
- Result is exhaust gas composition (lb/lb fuel)

Stoichiometric Air Flow (2)

- Carry this exercise a bit further
 - Insert fuel heating value (HHV)
 - Insert exhaust gas density (lb/ft³)
- Result is ft³ flue gas / mmBTU -- Definition of the F-factor.
 - Volume of exhaust gas generated by burning one mmBTU of fuel with no excess air.

F-factor

Table 4-5. "F-factors" for Various Fuels (scf/mmBTU)				
Fuel Types	F _d - dry	F _w - wet	F _c - carbon	
Anthracite coal	10100	10540	1970	
Bituminous coal	9780	10640	1800	
Lignite	9860	11950	1910	
Wood	9240		1830	
Oil	9190	10320	1420	
Natural gas	8710	10610	1040	

F-factor (cont.)

 F-Factor is the key relationship between stack flow and firing rate.

$$F_{d} = \frac{10^{6}}{HHV} \times \left[3.64 \text{ (\%H)} + 1.53 \text{ (\%C)} + 0.57 \text{ (\%S)} + 0.14 \text{ (\%N)} - 0.46 \text{ (\%O)}\right]$$

- Wet F-factor (eqn 4-6)
- Dry F-factor (eqn 4-7)
- F_c

Stack Flow & Firing Rate

 F-factor means firing rate can be determined without measuring fuel flow

E.G. Stoich. Flow
$$\left(\frac{\text{std ft}^3}{\text{hr}}\right)$$
 = Firing Rate $\left(\frac{\text{mmBTU}}{\text{hr}}\right) \times F_w \left(\frac{\text{std ft}^3}{\text{mmBTU}}\right)$

Note: We still need to account for excess air to relate firing rate to the actual (total) stack flow

Example 4-2

If stoichiometric exhaust flow is 45,000 scfm, what is the approximate oil or gas firing rate?

Solution:

45,000 (ft³/min) * 60 (min/hr) / 10,500 (ft³/mmBTU) = 257 (mmBTU/hr)

(We could have started with firing rate and calculated stack stoich flow)

Excess Air (outline)

- Excess air is necessary for complete combustion
 - Insufficient air assures incomplete combustion PIC
- Management

Measurement

Diagnostic uses

Excess Air Management

- Combustor controls couple air flow to fuel flow
 - This gives approximately correct air flow
- Exhaust O2 concentration measures excess air (air/fuel equivalence ratio)

% Excess Air =
$$\frac{\% O_2}{20.9 - \% O_2} \times 100$$

Definition, not a rigorous derivation

Excess Air vs. O₂ & CO₂

Equivalence Ratio

Equivalence Ratio =
$$\frac{20.9}{20.9 - \%O_2}$$

- Also called the "excess air correction factor"
 - Same information as excess air
- Note that the range of values is 1 to infinity

Excess Air vs. O₂ & CO₂ (cont.)

 CO₂ can be use to determine excess air – but value depends on fuel type.

- O₂ is easier to use
- CO₂ use dates from early measurement technology - the Orsat device

Total Exhaust Flow and Firing Rate

Exhaust Flow = Stoich. Flow
$$\times \left(\frac{20.9}{20.9 - \% O_2} \right)$$

Firing Rate
$$\left(\frac{mmBTU}{hr}\right) = \frac{Exhaust Flow \left(\frac{ft^3}{hr}\right) \times \frac{20.9 - O_2}{20.9}}{F_w \left(\frac{ft^3}{mmBTU}\right)}$$

Example 4-3

Determine the firing rate of a source with 20,000 scfm stack flow at 4.0% O₂.

Solution: Use eqn 4-11

$$\frac{20,000^{\text{ft}^3}/_{\text{min}} \times 60^{\text{min}}/_{\text{hr}} \times \frac{20.9 - 4.0}{20.9}}{10,500^{\text{ft}^3}/_{\text{mmBTU}}} = 92.4^{\text{mmBTU}}/_{\text{hr}}$$

Where we use a generic F-factor = 10,500

Oxygen Measurement

- O2 data are used for two purposes:
 - Excess air control
 - Emissions measurement

- Possible issues
 - Uniformity in duct flows
 - Interpreting the source of oxygen

Water Vapor (outline)

- Water from Fuel Hydrogen
- Water from Fuel Moisture

Water from Combustion Air

Water from Fuel Hydrogen

Stoichiometric water vapor concentration is given below where y is the fuel H/C ratio given by 12 * %H/%C

$$V_{w^1} = \frac{\frac{y}{2}}{4.78 + 1.45 \times y} \times 100$$

The exhaust concentration depends on the amount of air dilution, so:

$$V_{w}$$
 (actual exhaust concentration) = $V_{w^{1}} \times \left(\frac{20.9 - \% O_{2}}{20.9}\right)$

Water Vapor from Fuel Moisture

Fuel moisture contributes according to the formula where w = % moisture in the fuel

% Flue Gas Water Vapor = 25
$$\times \left(\frac{\text{W}}{100 - 0.75 \text{ W}}\right)$$

This is stoichiometric, so actual concentration is reduced by the amount of excess air.

In practice measured data are preferred over a mass balance

Calculating Gas Volume and Density

Ideal Gas Law

PV =nRT

Where:

P is pressure in lb/ft²

V is volume in ft³

n is number of moles

 $V/n = 385 \text{ ft}^3/\text{mole for gas at } 68^{\circ}\text{F } (528^{\circ}\text{R})$

R is the universal gas constant = 1545 ft-lb/(lb-mole °R)

T is temperature in degrees Rankin

Calculating Gas Volume and Density (cont.)

$$V_1 = V_2 \times (T_1/T_2) \times (P_2/P_1)$$

Typically (1) is standard conditions and (2) is stack

$$T_{std} = 528K (68F)$$

 P_{std} = 29.92 inches Hg

Example 4-4.

Stack test data show 8,000 ft³/min at 310°F, 28.67 inches Hg, and a stack draft of –0.45 inches w.g. Determine the flow rate in standard cfm (std ft³/min).

Solution: First determine stack pressure $P_s = 28.67 - 0.45/13.6 = 28.64$ inches Hg

Second, use Eqn 4-14 $V_{std} = 8000acfm * [528^{\circ}R/(460 + 310)^{\circ}R] * [28.64/29.92]$ = 5251 scfm

Example 4-5. Molecular weight

Stack data show water vapor = 8% by vol. and O_2 = 5% by vol. What is the approximate density of the exhaust at STP?

Solution:

First find the average MW. Use Fig 4-2 to estimate CO_2 at 14%. Determine N_2 by difference:

$$%N_2 = 100 - 8 - 5 - 14 = 73\%$$

Flue gas MW is the weighted average of constituents $MW_{avg} = [73*28 + 14*44 + 5*32 + 8*18]/100 = 29.6$

Example 4-5. (cont'd)

Use Eqn 4-15 for density

```
\rho = 29.6 (lb/lb-mole) / 385 (std ft<sup>3</sup> / lb-mole) = 0.077 (lb/ std ft<sup>3</sup>)
```

Wet & Dry Molecular Wt

EPA Method 2 relates wet & dry MW

$$MW_s = (1-B_{ws}) * MW_d + 18 * B_{ws}$$

Where: MW_s is for (stack) exhaust gas

MW_d is for dry exhaust gas

B_{ws} is the gas volume fraction of water

Enthalpy of Combustion and Heating Values (outline)

- Flame Structure Primary and Dilution Zones
- Combustion Temperature Levels
- Energy Content of the Flue Gas

Flame Structure

- Combustion temperatures
 - Chemical reactions at any temp., but
 - Flames require at least 2500°F
 - Fire is either hot or it goes out
- Gas Turbine Combustor
 - Hot primary zone followed by dilution
- Boiler Combustor
 - Hot flames followed by heat transfer

Gas Turbine Combustor

Boiler Combustor

Physical and Chemical Processes

- Fuel & air mixing & burning occur simultaneously in most commercial combustors
 - Chemistry is fast, so mixing usually limits the burning rate.

- A hot primary zone is a key element of flame stability.
 - Local peak temps probably about 4000°F
 - Radiative cooling is very fast at these temps.

Combustion Temperature Levels (outline)

- Stoichiometric Flame Temperature
- Adiabatic Temperature with Excess Gas
- Local versus Average Temperature

Stoichiometric Flame Temperature

- Adiabatic temperature
 - Theoretical temperature with no heat loss
 - Think of fire in an insulated box
- Basic energy balance
 - Fuel energy released = Enthalpy of the exhaust gas
 - Can be used to derive "flame temperature" a theoretical maximum combustion temperature
 - Maximum delta-T is about 4000°F

Energy Balance (1)

Fuel energy = Exhaust enthalpy (eqn 4-16)

Q (BTU) = V (std ft³) ×
$$\left(\frac{29}{385}\right) \left(\frac{lb}{std ft^3}\right)$$
 × C_p $\left(\frac{BTU}{lb^{\circ}F}\right)$ × ΔT (°F)

Where:

Q = Fuel energy released

V = E.G. volume at standard conditions

Cp = E.G. specific heat

delta T = E.G. temperature rise

Energy Balance (2)

 Solve equation 4-16 for delta-T – the adiabatic temperature rise.

$$\Delta T(^{\circ}F) = \frac{Q}{V \times C_{p}} \times \frac{385}{29}$$

 When Q is one mmBTU, the F-factor gives the volume V (approx) = 10,500 ft³ -- so delta-T can be calculated.

Energy Balance (3)

- Except
 - Energy balance is based on LHV
 - F-factor is based on HHV
- So adjust the volume (F-factor) by the ratio HHV/LHV

With typical data, delta-T = 4000°F

Adiabatic Temperature with Excess Gas

Example 4-6

• A thermal oxidizer treats air from an oven at 250°F. The stack oxygen measured during an emission tests is 14.0%. What was the oxidizer temperature?

Solution 1: Read delta-T from Figure 4-5 and add 250°F to give about 1600°F

Example 4-6 cont'd

Solution 2: Use equation 4-18.

First determine the LHV F-factor:

$$F_w = 10610 * 22,200/20,000 = 11,777 \text{ (std ft}^3/\text{mmBTU)}$$

Use Cp = 0.30 and insert the data in eqn 4-18

$$\Delta T = \frac{10^6}{11,777 \times 0.30} \times \frac{20.9 - 14.0}{20.9} \times \frac{385}{29} = 1240^{\circ} F$$

Add 250° inlet temperature to get 1510°F

Example 4-6 cont'd

Solutions 1 & 2 differ because Figure 4-5 is based on oil data and solution 2 was for gas.

The objective was an approximate, not exact, value to use for a data QC check.

The point is that the exhaust O2 implies the maximum average incinerator temperature.

Local vs. Average Temperature

- The average combustor exit temperature is lower than the peak combustion temperature for two reasons:
 - (1) radiative heat loss from the flame, and
 - (2) the fact that fuel mixes with air in the flame.
- Fuel-air mixing during combustion means
 - Non uniform temperatures
 - Local temperatures that approach adiabatic

Diffusion & Premix Flames

- Most combustors mix fuel & air simultaneous with burning – diffusion combustion
- A few (gasoline engines) premix fuel & air prior to combustion.
- Peak temperatures of diffusion combustion are invariably high; premix temperatures depend on equivalence ratio (Fig. 4-5)

Energy Content of the Flue Gas

- Flue gas has energy in three forms
 - Latent Heat
 - Sensible Energy
 - Specific Heat
- It gives up some of this energy to useful work or heat.
- At the exhaust point (stack) the remaining energy is lost

Latent Heat of Water Vapor

$$Q_{LH}\left(\frac{BTU}{hr}\right) = W_{EG}\left(\frac{lb}{hr}\right) \times \left(\frac{\% H_2O}{100}\right) \times \left(\frac{18}{29}\right) \times 1000 \left(\frac{BTU}{lb}\right)$$

Where:

Q_{IH} =flue gas latent heat, BTU/hr

W_{FG} = flue gas mass flow rate, lb/hr

%H₂O = concentration of water vapor in the E.G., % by volume

= molecular weight of water, lb H_2O/lb -mole H_2O

= molecular weight of E.G., lb E.G./lb-mole E.G.

= factor to convert water fraction from a volume to a mass basis

Latent Heat (cont.)

This is more useful expressed as a fraction of the total heat input.

Use the F-factor and a value of 10,500 to simplify it.

$$\frac{Q_{LH}}{Q_{Tot}} = \frac{\% H_2 O}{100} \times \frac{20.9}{20.9 - \% O_2} \times \frac{F_w}{1000} \times \frac{18}{385}$$

$$\frac{Q_{LH}}{Q_{Tot}} = \frac{\% H_2 O}{100} \times \frac{20.9}{20.9 - \% O_2} \times 0.49$$

Example 4-7. Exhaust latent heat

What % of the fuel energy is carried by uncondensed water in the stack of a gas-fired source where data show 4.5% O₂ and 17% water vapor by volume?

$$\frac{Q_{LH}}{Q_{Tot}} = \frac{17}{100} \times \frac{20.9}{20.9 - 4.5} \times 0.49 = 0.106$$

So 10.6% of the fuel energy (HHV) is lost

Latent Heat (cont.)

For dry fuel, the latent heat loss can be determined from fuel analysis alone – no stack data is required.

Table 4-6. Approximate Exhaust Latent Heat Energy				
Fuel	C/H Ratio	HHV (BTU/lb)	Q _{LH} /Q _T	
Natural Gas	CH _{3.8}	23,000	0.094	
Heavy Oil	CH _{1.7}	18,500	0.060	
Bitumin. Coal	CH _{0.8}	13,500	0.042	

Sensible Energy

$$Q_S (BTU/hr) = W_{EG} (lb/hr) + C_p (BTU/lb/°F)* \Delta T (°F)$$

Where:

Q_s = flue gas sensible heat, BTU/hr

W_{FG} = E.G.mass flow rate, lb/hr

C_p = E.G. specific heat, BTU/lb/°F

ΔT = temperature difference between flue gas and ambient air, °F

Sensible Energy (cont.)

This is more useful expressed as a fraction of the total heat input.

Divide by eqn 4-11 and use the F-factor with a value of 10,500 to simplify it.

$$\frac{Q_{S}}{Q_{Tot}} = \Delta T \times \frac{20.9}{20.9 - \% O_{2}} \times \frac{C_{p} \times F_{w}}{10^{6}} \times \frac{MW_{FG}}{385}$$

$$\frac{Q_{S}}{Q_{T}} = \frac{\Delta T}{4200} \times \frac{20.9}{20.9 - \% O_{2}}$$

Example 4-8. Sensible energy

Stack measurements show $T = 375^{\circ}F$ and $O_2 = 3.3\%$ when the ambient temperature is 50°F. What fraction of the fuel energy is lost in the form of hot gas?

$$\frac{Q_S}{Q_{Tot}} = \frac{375 - 50}{4200} \times \frac{20.9}{20.9 - 3.3} = 0.092$$

Specific Heat

Table 4-7. Specific Heat [BTU/(lb-°F) or kcal/(kg-°C)]				
Temperature	Air	CO ₂	Water Vapor	
68°F	0.242	0.200	0.445	
212	0.244	0.218	0.452	
500	0.249	0.245	0.470	
1100	0.260	0.285	0.526	
2200	0.278	0.315	0.622	
3000	0.297	0.325	0.673	
3800	0.303	0.330	0.709	

Specific Heat (2)

- At moderate temperatures specific heat of dry exhaust gas is about 0.25
- Specific heat of water vapor is about 2x that of air or dry flue gas
- At high temperatures C_p increases

Example 4-9. Specific heat

What is the specific heat of a combustion source exhaust gas with 18% H₂O and a stack temperature of 475°F?

Solution:

Assume dry gas Cp = 0.25

0.18 * 0.47 + (1 - 0.18) * 0.25 = 0.290 BTU/(lb-°F)

Combustor Size and Residence Time

- Combustor Size
 - Volume will be designed proportional to firing rate
 - Volume will be inversely proportional to pressure
 - Fuel mixing/combustion rate affects design size
- Combustion Loading
 - Expressed/defined as BTU/(hr-ft³)

Example 4-10. Furnace loading

What is the thermal loading of a furnace with firebox dimensions of 7 ft x 8 ft x 25 ft, fired at design maximum rate of 120 mmBTU/hr?

Solution:

The furnace volume is: $7 * 8 * 25 = 1400 \text{ ft}^3$ Thermal loading is $120(10^6)/1400 = 85,700 \text{ BTU/(hr-ft}^3)$

Combustor Size and Residence Time (cont.)

- Concept of residence time has regulatory significance for waste combustors
- Formula for average residence time is

t_{res} = Furnace volume (ft³)/Actual gas flow (ft³/second)

Residence time is related to thermal loading

Example 4-11. Residence time

Determine the residence time of a thermal oxidizer with an exhaust flow of 2600 std ft³/min and an operating temperature of 1450°F in a 350ft³ chamber.

Solution:

First, determine the gas flow at actual ft^3 per second. Actual flow = 2600 * {(1450+460)/528}/60 = 157 acf/sec

Now use Equation 4-25

Residence time = 350/157 = 2.2 seconds

Conclusions

- Combustion is a complex process
- Laws of Conservation of Mass and Energy
- Using exhaust gas data
- Firing rate & thermal efficiency

Chapter Summary

- Basic combustion chemistry
- Laws of Conservation of Mass and Energy
- Definitions

Calculations

Energy balance