APTI Course 427

Combustion Source Evaluation

Chapter 3: Fuel Characteristics

Chapter Overview (outline)

Fuel Characteristics and Usage Trends

Fuel Analyses

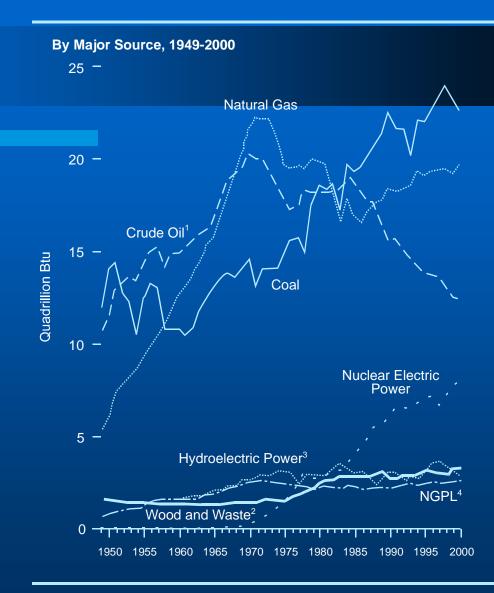
Fuel Properties (Gas, Oil, Coal)

• Other Solid Fuels

Some History

Wood, the original fuel

• Coal, more abundant and efficient


• Oil, a cleaner ?? fuel

• Natural Gas, clean, cheap, abundant

Fuel Categories

Table 3-1. Fuels			
Fuel Category	Examples		
Solids	Bituminous coal, sub-bituminous coal, lignite, peat, wood		
Liquids	Kerosene, No. 2 oil, No. 6 oil, coal-water emulsions, oil- emulsion		
Gaseous Fuels	Natural gas, propane, landfill and biological gases		
Wastes	Municipal and medical wastes, hazardous wastes, sewage sludge, tires		
Biomass	Wood and wood waste, bagasse, straw		

US Energy Production Trends

- Includes lease condensate Includes ethanol blended into motor gasoline Conventional and pumped-storage hydroelectric power Natural gas plant liquids

Natural Gas Production

 A perceived shortage caused production to drop in the 70's

 Its availability has resulted in power plants that can only burn gas

 Distributed power generation may drive a continued increase in gas use.

Energy Consumption

Table 3-2. U.S. Energy Consumption, 1993-1997 Energy Use Expressed in Quadrillion BTU						
Energy Source	Energy Type	1993	1994	1995	1996	1997
	Coal	19.837	20.027	20.090	21.011	21.439
Fossil Fuels	Natural Gas	20.827	21.288	22.163	22.560	22.588
	Petroleum	33.841	34.735	34.663	35.864	36.314
Total Fossil Fuels		74.522	76.073	76.943	79.434	80.360
	Hydroelectric Power	3.147	2.996	3.472	3.914	3.932
	Geothermal Energy	0.393	0.395	0.339	0.352	0.322
Renewable Fuels	Biomass	2.784	2.838	2.846	2.938	2.723
	Solar Energy	0.071	0.072	0.073	0.075	0.074
	Wind Energy	0.031	0.036	0.033	0.035	0.035
Total Renewable Fuels		6.426	6.309	6.763	7.315	7.086
Source: DOE/EIA0603(98)/1 Energy Information Administration ^[2]						

Fuel Analyses (outline)

Basis of Fuel Analysis

- Market Characteristics
- Ultimate Analysis
- Ash Composition Data
- Size Distribution of Solid Fuels

Basis of Fuel Analysis (outline)

• Purpose

• Examples

• Types

• Technique

Fuel Analysis - Concept

• Laboratory analysis of a fuel sample

- Original purpose suitability for a particular combustor
 - Octane for a gasoline engine
 - #6 Oil viscosity
 - Coal ash melting temp for a PC boiler
- Purpose is expanded for environmental issues
 - Sulfur content

Examples of Fuel Analysis

 The analysis reports properties or % composition on different basis – such as:

- As-received
- Air-dried
- Moisture free
- Mineral and ash free

Types of Fuel Analysis (cont.)

Table 3-3. Fuel Analysis – Common Elements				
Type of Analysis	Coal and Solid	O#	Gas	
Market (Proximate)	 Heating value per lb. Moisture Sulfur Volatiles Fixed carbon Ash 	 Heating value per gal. Density or API gravity Sulfur Viscosity Pour point Water & sediment 	 Heating value per ft³ Specific gravity 	
Ultimate (Chemical)	 C, H, S, N Oxygen by difference Moisture Ash 	 C, H, S, N Oxygen by difference Moisture Ash 	 CH₄, C₂H₆, C₃H₈, etc. CO₂, N₂, H₂O O₂ 	
Ash or Trace Element	 SiO₂, Al₂O₃, TiO₂ Fe₂O₃, CaO, MgO K₂O, Na₂O, CI, Hg Others by request 	 V, Na, Others by request 	 Others by request 	

Sample Acquisition

Lab sample should be representative

Oil & gas – easy but not fool proof

• Coal, wood, other solid fuels

Municipal waste

Market Characteristics

- Proximate Analysis of coal
- Primary characteristics
 - Heating Value
 - Sulfur Content
- Secondary characteristics
 - Moisture Content
 - Ash or Mineral Content
 - Volatile Matter & Fixed Carbon
- Fuel Oil Secondary characteristics
 - Viscosity

Fuel value is \$/mmBTU

• Definitions

- BTU
- Higher Heating Value (HHV)
- Lower Heating Value (LHV)

Heating Value Uses

• HHV – total energy (exhaust at ambient temp)

• LHV – HHV minus water vapor energy

Difference is about 1030 BTU/lb of water

Higher and Lower Heating Values

Table 3-4. Fuel Heating Values - BTU/lb				
Fuel	HHV	LHV		
Natural Gas	22,200	20,000		
No. 2 Oil	19,000	17,860		
No. 6 Oil	18,200	17,300		
Bituminous Coal	14,000	13,600		
Doug Fir- Dry	9,000	8,400		

HHV – LHV Issues

- Both HHV & LHV reported in BTU/lb
- Fuel suppliers and Utilities use HHV
- EPA and emissions reporting use HHV
- Engine manufacturers use LHV
- Calculations of fuel use or emission rates can err by 10% using the wrong units.

Example 1. Fuel Use Calculation

A combustion process operates at 10 mmBTU/hr. Fuel A has HHV=11,000 BTU/lb. Fuel B has HHV=12,750 BTU/lb. What is the difference in amounts needed for alternatives A and B?

Solution:

Fuel A =
$$\frac{\text{H}_{\text{T}} \text{Release Rate}}{\text{Fuel HHV}} = \frac{10 \times 10^{6}}{11,000} = 909 \,\text{lb/hr}$$

Fuel B = $\frac{\text{H}_{\text{T}} \text{Release Rate}}{\text{Fuel HHV}} = \frac{10 \times 10^{6}}{12,750} = 784 \,\text{lb/hr}$

Example 2. Ash Quantities

Both fuels from example 1 have an ash content of 10.5%. If the boiler operates 7000 hours per year, what change will occur in the total quantity of ash for disposal? Assume none of the ash escapes into the atmosphere.

Solution:

Present Ash Quantity = $\frac{0.105}{12,750} \times 10 \times 10^{6} \times 7,000 = 576,500 \text{ lb/yr}$ Future Ash Quantity = $\frac{0.105}{11,000} \times 10 \times 10^{6} \times 7,000 = 668,200 \text{ lb/yr}$

So the ash quantity will increase by 92,000 lb

Sulfur Content

 Why report? Typically air emission source permits limit fuel S to control SO₂ emissions

Examples

- Coal limited to 1% S
- Oil limited to 0.5% S

Proximate Analysis Data

Market analysis specific to coal

- HHV
- Sulfur
- ASTM D271
 - Ash
 - Fixed carbon
 - Volatile matter
 - Moisture (surface & inherent)

Moisture Content Impacts

Amount of fuel required to fire a furnace

- Water adds weight
- Water absorbs energy converting to steam
- Water vapor in the flue gas effects
 - Emission measurement procedures
 - Performance of emission control equipment

Volatile Matter

 Organic compounds that vaporize when the fuel is heated

 Volatile matter supports ignition and rapid combustion – necessary for some combustors

Fixed Carbon

Carbon remaining after heating (nonvolatile)

Stoker furnace – fuel that will burn on the grate

Burn rate - slow

Ash or Mineral Content

Inorganic solids

• Furnace ash management

Indicator of potential particulate emissions

Fuel Oil Market Properties

• HHV

- Density or Specific gravity
- Pour point
- Viscosity
- Water and sediment

Fuel Oil Density

Oil is purchased by the gallon

• HHV is measured on a mass basis (BTU/lb)

• Density is used to report BTU/lb

 $Sp.gr@60^{\circ}F = 141.5/(API + 131.5)$

Ultimate Analysis

Elemental analysis by ASTM D3176

Used primarily for emissions analysis
 Needed to calculate F-factor

Always totals to 100% (oxygen by difference)

Ultimate Analysis (cont.)

Table 3-5. Typical Ultimate Analysis for Coal and No. 6 Oil (% by wt.)				
Analyte	Coal – As Received	Coal – Dry Basis	No. 6 Oil	
Moisture	3.03	0	nil	
Carbon	60.68	62.58	85.78	
Hydrogen	4.35	4.49	10.59	
Nitrogen	1.12	1.16	0.03	
Chlorine	0.12	0.12		
Sulfur	4.29	4.42	2.13	
Ash	19.18	19.78	0.10	
Oxygen (diff.)	7.23	7.45	1.37	
Total	100.00	100.00	100.00	

Ash Composition Data

Solid material left after complete combustion

• Fate in a combustor

 Example: 150 tons of 10% coal leaves 15 tons of ash

Ash Composition Data (cont.)

Table 3-6. Example of Coal Ash Composition (%)			
Mineral	Ash No. 1	Ash No. 2	
SiO ₂	38.94	55.93	
Al ₂ O ₃	22.75	25.02	
TiO ₂	1.03	1.15	
Fe ₂ O ₃	30.97	9.73	
CaO	1.59	0.81	
MgO	0.94	1.07	
K ₂ O	1.82	2.36	
Na ₂ O	0.46	0.46	
SO3	0.31	0.85	
P ₂ O ₅	0.10	0.12	
SrO	0.02	0.00	
BaO	0.08	0.12	
Mn₃O₄	0.10	0.02	
Undetermined	0.89	2.36	

Size Distribution of Solid Fuels

Fuel particle size matters

 Determines the burn rate
 It usually governs carbon carry over

 Measuring Particle Fuel Size

Stoker Fuel Sizes

Pulverized Coal Size

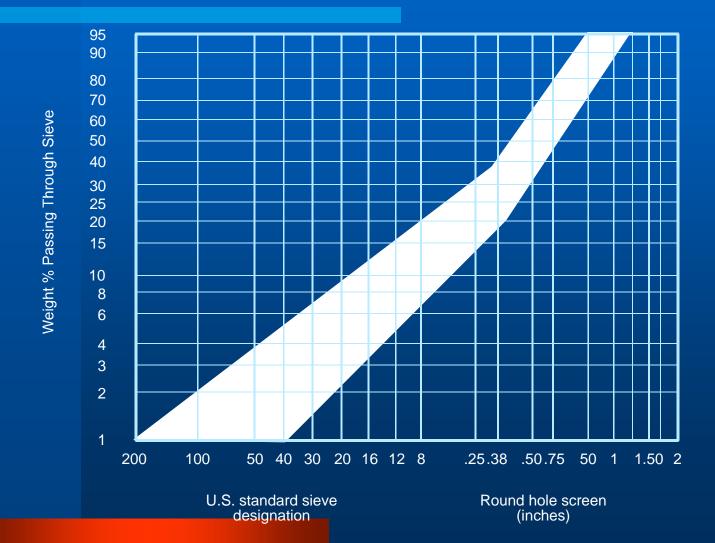
Measuring Fuel Size

ASTM Sieves

Measuring Fuel Size (cont.)

Table 3-7. Standard Sieve Size				
Mesh	Size (mm)	Size (inch)		
200	0.075	0.003		
100	0.15	0.006		
50	0.30	0.012		
35	0.50	0.020		
18	1.00	0.039		
10	2.00	0.079		
8	2.36	0.093		

Stoker Fuel Sizes


 The larger the particle the longer it takes to burn

• 0.5 Inch is typical

• Limits

- Particles <2 mm can be blown out of the furnace
- Particles >0.2 mm are too big to burn in suspension

Example Specification

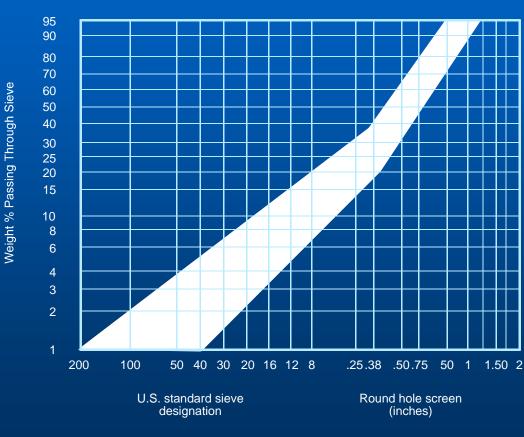
Stoker Fuel Sizes (Cont.)

Off spec coal is usually cheaper than the good stuff.

Wood or wood waste
 Little control over size. Adapt the system.

Municipal and medical wastes
 – RDF

Example 3. Stoker coal sizing


A coal supply to be used for a spreader stoker has a size distribution as indicated in the following table. Is this material appropriately sized for use in the boiler if the size curve shown in Figure 3-3 applies?

Coal Size Range	Wt. % smaller
< 3/8	80
< 1/8	25
<20 mesh	8
< 50 mesh	6

Note: Mesh sizes apply to standard ASTM sizing screens

Stoker Coal Example

- More coal req'd > 3/8"
 80% vs 18% 40%
- 1/8" is close
 - 25% vs 8% 22%
- 20 Mesh is OK
 - 8% vs 2% 9%
- Too much <50 mesh
 6% vs <4%

Pulverized Coal Size

(Powdered) coal burns in suspension
 The finer the better
 Fine size traded against grinding cost

• 50, 100, 200 Mesh screens

- Generally 90% - 95% passes 200 mesh

->50 Mesh coal is too large for suspension firing

Fuel Properties (outline)

• Gas Fuels

• Fuel Oils

Coal

Gas Fuels

Advantages

- Clean burning, clean handling
- Mixes with air
- Constituents
 - Natural gas is mostly methane (CH₄)
- History
 - Original commercial gas made by heating coal
- Types
 - Natural Gas
 - Propane and Liquefied Petroleum Gas
 - Waste Biological Gases

Natural Gas

- Transportation
- Composition
 See table 3-9
- Heating value

Natural Gas (cont.)

Sour gas & Sweet gas

- Refers to the amount of reduced sulfur compounds
- Lean gas
 - High methane content, meaning
 - Low heating value

• Wet gas

Contains condensable organic compounds

Propane and LPG

Properties
 – Liquid at 15 psi → sold by the gallon

Composition

 Mostly (97%) propane (C₃H₈)

• Heating value – 2500 BTU/ft³

Used where natural gas is not available

Waste Biological Gases

Generated in anaerobic conditions

- Digestive tracts
- Landfills
- Sewage treatment
- Landfill formation rates vary
 - Water, oxygen exclusion required
- Biogas
 - Anaerobic digestion of sewage sludge

Fuel Oils

Fuel oil classification using ASTM standards.

Table 3-10. ASTM Fuel Oil Specifications						
Grade	Flash Point, °F (°C) (EC)	Water and Sediment, (% by vol.)	Sulfur Content, (% by vol.)	Ash Content, (% by vol.)	Viscosity (centistokes)	Specific Gravity @60 °F
	Min.	Max.	Max.	Max.	Min.	Max.
No. 1	100 or legal (38)	trace	0.5		2.2	0.85
No. 2	100 or legal (38)	0.10	0.5		3.6	0.85
No. 4	130 or legal (55)	0.50	_	0.10	26.4	
No. 5 (Light)	130 or legal (55)	1.00	_	0.15	65.0	
No. 5 (Hvy)	130 or legal (55)	1.00	_	0.15	194.0	
No. 6	140 or legal (60)	2.00			2,200.0	

Source: DOE/EIA -0603(98)/1 Energy Information Administration [2]

Distillate vs. Residual

- Refining crude oil
 - Distillate products
 - Residual (#6, Bunker C)
- Composition
 - Distillate is fairly clean
 - Residual concentrates most of the crude contaminants
- Residual fuel is cheaper to buy but more expensive to handle/use
- #6 Must be heated to pump or burn

Common Fuel Oils

Table 3-11. Typical Properties of Common Fuel Oils						
Grade	Name	Color	Sulfur	Ash	BTU/Igallon	Comments
No. 1	Kerosene	Light	0.0 – 0.5	Nil	137,000	
No. 2	Distillate	Amber	0.0 – 0.7	Nil	141,000	Home heating fuel
No. 4	Light Residual	Black	0.2 – 2.0	0.0 – 0.1	146,000	Fluid at ambient temperature
No. 6	Residual	Black	0.7 – 5.0	0.1 – 0.5	150,000	Heat required to pump or burn

Source: DOE/EIA -0603(98)/1 Energy Information Administration

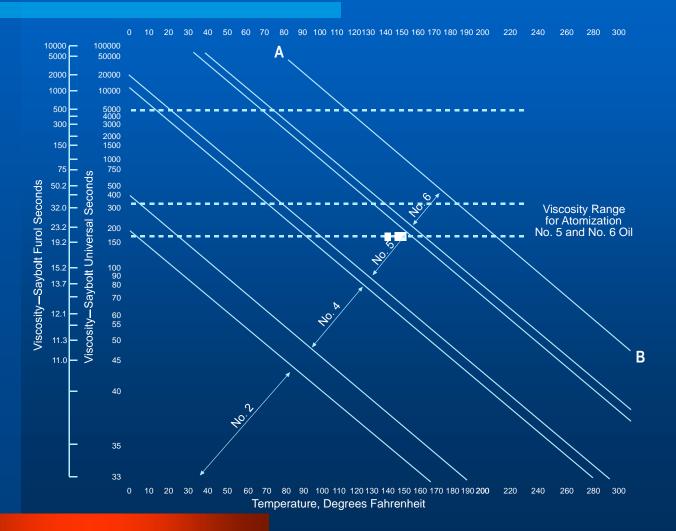
Distillate fuel oil

• #2 Oil, Diesel, Kerosene

Viscosity can vary seasonally

ASTM sulfur limit is 0.5%
 Highway diesel limit is 0.05% (500 ppm)
 Future diesel limit will be <100 ppm)

Residual Oil


Residual properties are tailored to the market
The ultimate residue is petroleum coke (solid)
Marketable sulfur contents

2.2% in the 1970's
Typically 1% or less today

Residual oil has vanadium & other metals

• #4 Oil is thinner (more pumpable) than #6

Oil Viscosity-Temp Relationship

53

Emulsions (outline)

Oil-water

• Coal- water

Oil Emulsions

Oil-water mixtures

Very heavy oil becomes pumpable (Oremulsion)

Combustion can be somewhat different

- Substitute for poor atomization
- Some NOx reduction

Coal-Water Emulsions

Finely pulverized coal + water = liquid
 Dispersant needed to keep coal in suspension

- Allows coal to be fired in an oil designed system – in theory
 - Coal ash content is 100 times oil ash
 - Furnace systems not designed for coal, can't easily use it.

Coal

• Primary fuel for electric power generation

• Classification (see Table 3-12)

- Anthracite (high fixed carbon content)
- Bituminous (higher volatile content)
- Subbituminous (lower heating value)
- Lignite (heating value < 8300 BTU/lb)

Example properties (see Table 3-13)

Anthracite (hard coal)

Source – mostly central Pennsylvania
 A premium fuel

• Slow burning, not smokey \rightarrow residential use

Usually low sulfur

Bituminous

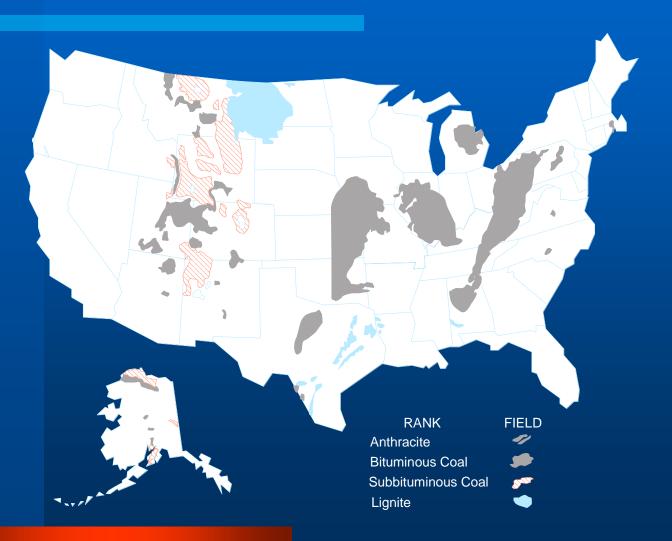
Tend to form sticky "bitumen" when heated

• Volatile content 15% to 35% \rightarrow fast burning

• Primary fuel for electric utility PC boilers

• Sulfur, ash & mercury content varies

Subbituminous


Typically western coal

Moisture content higher
Sulfur content lower
Ash content higher

- Young coal, older than peat
- Very high moisture levels (30%)
- High volatile content
- Low heating value
- Susceptible to spontaneous combustion

Geographic Distribution of Coal

Coal Properties Related to Combustion (outline)

Agglomerating /Caking Tendencies
Ash Softening and Fusion Temperatures
Stoker Fuel Size Distributions
Coal Size Terminology
Grindablity and Friability

Agglomerating/Caking Tendency

Free Swelling Index by ASTM D720
 – Scale of 0 (free burning) to 9 (severe swelling)

 Tendency to fuse and swell when burning compromises stoker operation

• Coke from swelling coal is less dusty

Ash Softening and Fusion Temperatures

- Ash melting temperature affects accumulation in a PC boiler
- ASTM Procedure D1857-68
 - Initial deformation temperature
 - Softening temperature
 - Fluid temperature

Ash chemistry determines temperature behavior.

Stoker Coal Size Distributions

Most stoker coal is fired as purchased
 – Size distribution affects operation & emissions

Spreader stoker distributes according to size
 Too much fines accumulates below spreader
 Too much oversize piles up elsewhere

 0.2mm to 2mm fines in suspension cause carbon carryover

Coal Size Terminology

Table 3-14. Common Use Size Distribution Terms for Bituminous Coal		
Coal Category	Size Description	Size Characteristics
Bituminous	Run-of-mine	No size segregation
	Run-of-mine 8 inch	Lumps greater than 8 inches broken
	Lump	Larger than 5 inches
	Egg	Smaller than 5 inches and larger than 2 inches
	Nut	Smaller than 2 inches and larger than 1.25 inches
	Stoker	Coal smaller than 1.25 inches and larger than 0.75 inches
	Slack	Coal smaller than 0.75 inches

Source: DOE/EIA -0603(98)/1 Energy Information Administration

Grindability and Friability

Grindability affects PC boiler operation

 Hard grinding coal consumes more power or
 Yields larger particle sizes

- Hardgrove grindability (ASTM D4090)
- Friability How much dust is generated?
- Technique
 - Drop-shatter test
 - Tumbler test

Contaminants, Air Pollution, Cleaning (outline)

Mercury

• Ash

• Sulfur

Coal Cleaning

Forms – all are vapors
 – Elemental, oxide, chloride

Fate – moves up the food chain

Control – still evolving

Levels (see Table 3-15)

Coal Ash

- Forms
 - Inherent
 - Incidental (rock & dirt)

• Cleaning can remove some incidental ash

Coal Sulfur

• Forms (ASTM D2492)

- Pyritic sulfur
- Organic sulfur
- Sulfates
- Pyritic sulfur
 - Affects boiler slag
 - Causes SO₂ emissions from kilns

Coal Cleaning

Purpose – remove rock & dirt

Techniques

- Hand sorting
- Washing (flotation)
- Froth flotation

Cleaning may reduce ash by 25% - 50%

Other Solid Fuels (outline)

• Fossil Solid Fuels

• Wood

• Biomass Fuels

Solid Wastes

Fossil Solid Fuels

• Peat

- High moisture, low heating value
- Rarely used commercially

Fossil Solid Fuels (2)

 Coke – carbon residue from heating coal Main use is for steel making Metallurgical Coke Ash is compatible with steel chemistry Petroleum Coke - High sulfur, low ash Coke breeze Fines (<1/8") generated during coke mfr Charcoal

Wood (outline)

Green Wood (forest products)

Mixed Wood Waste

• Dry Wood Waste (manufacturing)

Sawdust and Sander Dust

Wood Chips (see Table 3-16)

Green Wood

Common fuel and forest products mills

Generated on site or purchased
Debarking & sawing operations
Chipping up trees too small to saw
Chipping up logging slash

Green wood moisture usually >30%
 – Clean burning can be a challenge

Mixed Wood Waste

• Source

- Construction & demolition, pallets
- Can contain inorganic material
- Usually dry, easy burning
- Processing
 - Shredded to facilitate conveyers & feeders
- Pollution impacts
 - Pressure treated wood burns clean, but is highly regulated.
 - Paint & dirt tend to increase particulate emissions

Dry Wood Waste

Heating value can be 8000 to 10,000 BTU/lb
 Dry wood burns easily, cleanly

Sawdust, sander dust

- May be blown directly from the source (no storage)
- Typically burned in suspension
- Fines >0.2 mm tend to create carbon carryover

Biomass Fuels

Burned directly or converted to liquid fuel

Fuel crops

 Some wood fired boilers
 Ethanol from corn

Agricultural wastes

Biomass Fuels

Table 3-17. Bagasse Properties	
Analyses (as-fired), % by wt	Value
Proximate	
Moisture	52.0
∨olatile Matter	40.2
Fixed Carbon	6.1
Ash	1.7
Analyses (as-fired), % by wt	Value
Ultimate	
Hydrogen, H ₂	2.8
Carbon, C	23.4
Sulfur, S	trace to 0.6
Nitrogen, N ₂	0.1
Oxygen, O ₂	20.0
Moisture, H ₂ O	52.0
Ash	1.7
Heating Value	
Btu/lb.	4,000
kJ/kg	9,304

Solid Waste Fuels

Waste-to-Energy

- Facilities with no energy recovery are incinerators
- Municipal waste composition (Table 3-18)
 - Varies locally & seasonally
 - Not amenable to simple fuel analysis
- Problematic materials
 - Toxic: asbestos, batteries with mercury
 - Hazardous: fuel tanks, ammunition, compressed gas

Medical Waste (Table 3-19)

Similar to MSW but

- Moisture can be low
- Heating value may be high
- May have chloride from PVC plastic

Regulated Medical Waste (some States)

 Infectious, blood soaked, anatomical

 Small hospital incinerators have largely disappeared

Chapter Summary

- Fuel trends
- Sampling & analysis
- Heating values
- Contaminants
- Size distribution
- Natural gas constituents

- Fuel oil
- Coal properties
- Coal combustion
- Mercury levels
- Wood fuels
- Other solid waste fuel